scholarly journals ORGANOGENESIS IN CULTURED ADVENTITIOUS ROOT SEGMENTS AND IN PROTOPLAST-DERIVED CALLUS OF SWEET POTATO

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1121a-1121 ◽  
Author(s):  
Peggy Ozias-Akins ◽  
Srini Perera

One cm segments from adventitious roots of sweet potato (Ipomoea batatas (L.) Lam.) will regenerate shoots when cultured on Murashige and Skoog salts and vitamins plus either sucrose (1-3%) or fructose (1-6%). The best source for adventitious roots is sweet potato shoot cultures maintained in Magenta vessels. A low concentration of cytokinin (0.02 mg/liter) promotes shoot formation. Higher levels of cytokinin (0.1-0.5 mg/liter) encourage callus growth. The maximum average number of shoots formed per root segment attained thus far is 0.5. Attempts are being made to increase the frequency of shoot formation. Regeneration of shoots from roots also may be a useful method for obtaining plants from protoplasts of sweet potato. Protoplasts can be isolated from mesophyll tissue and petioles of in vitro grown plants. Plating efficiency of up to 12% routinely can be obtained. Shoot formation directly from callus is sporadic; root formation is more frequent.

2002 ◽  
Vol 24 (3) ◽  
pp. 776-777 ◽  
Author(s):  
Cristina Paiva da Silveira Carvalho ◽  
Diva Correia ◽  
Abdellatif Kemaleddine Benbadis ◽  
José Magno Queiroz Luz ◽  
Adroaldo Guimarães Rossetti

Spondias mombin L. shoot cultures were initiated from nodal explants taken from plants propagated by seeds. Explants coming from 4-6 months old plants, previously disinfected, were cultivated on WPM medium supplemented with a wide range of concentrations of BAP (0.0, 0.22, 0.44, 2.22 and 4.44 muM) and NAA (0.0, 0.27 and 2.70 muM). After four weeks, the responses obtained were axillary shoot and root formation. The first response were preferentially induced with the medium containing only BAP, regardless of the BAP concentration. The addition of NAA on medium reduced significantly axillary shoot formation and induced rhizogenesis. Roots were formed on nodal explant basis, preferentially on medium supplemented with 4.44 muM NAA. The medium supplemented with BAP reduced significantly root formation.


2020 ◽  
Author(s):  
Rachael Barron

Artemisia tridentata (big sagebrush) is an ecologically important shrub found in western North America. In vitro techniques can be applied to big sagebrush for the purpose of studying gene function, genotypic and phenotypic plasticity studies, cloning, genotypic preservation, and restoration. I performed experiments to develop an indirect organogenesis protocol to regenerate whole Wyoming big sagebrush plants from leaf explants. Callus formation frequency was 88% (±4.0%) in leaf explants cultured on medium containing 0.5 mg/l BAP and 1.0 mg/l NAA. Shoot formation frequency was variable between replicates and was the highest when callus tissue was cultured on medium containing 1.5 mg/l BAP and 0.1 mg/l NAA, 37% to 80%. I tested several auxin treatments to induce root formation and concluded the best to be 0.5mg/l IBA, which yielded 42% to 60% rooting. Taking into account all these variables, I estimate the total regeneration efficiency to range between 14% to 43% on this set of treatments. This protocol was also applied to basin big sagebrush. Callus formation was 100% in leaf explants. Shoot formation was 34% (±14.6%), but shoots exhibited a hyperhydric phenotype and were not transferred to root induction medium. The in vitro regeneration protocol developed is a crucial element that would be required to transform big sagebrush using molecular approaches. Experiments were also conducted to determine the feasibility of shoot tip and nodal cuttings to develop adventitious roots in vitro. This method can provide genetically identical material much faster than in vitro regeneration. Adventitious root formation in Wyoming big sagebrush cuttings cultured on two media types was inconsistent, ranging from 10% in some experiments to 80% in others. Limited success was achieved in nodal cuttings cultured on modified MS medium containing auxin and cytokinin 12.5% (±5.6%). No root formation was achieved in mature plant tissue collected in the field. Results indicated that genotypic influences were likely more responsible for variations in rooting than the medium or vessel conditions tested. Cloning experiments in basin big sagebrush further supported this notion. All material for these experiments came from half-sibling individuals that was maintained separately throughout the course of the experiments. Some half-siblings formed no adventitious roots on any treatments tested whereas others had high rates of formation on all treatments. Further studies, utilizing exogenous PGRs, such as auxins, may provide more successful adventitious root formation in shoot tips from both big sagebrush subspecies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jyoti Devi ◽  
Ekjot Kaur ◽  
Mohit Kumar Swarnkar ◽  
Vishal Acharya ◽  
Shashi Bhushan

Abstract Background Adventitious root formation is considered a major developmental step during the propagation of difficult to root plants, especially in horticultural crops. Recently, adventitious roots induced through plant tissue culture methods have also been used for production of phytochemicals such as flavonoids, anthocyanins and anthraquinones. It is rather well understood which horticultural species will easily form adventitious roots, but the factors affecting this process at molecular level or regulating the induction process in in vitro conditions are far less known. The present study was conducted to identify transcripts involved in in vitro induction and formation of adventitious roots using Arnebia euchroma leaves at different time points (intact leaf (control), 3 h, 12 h, 24 h, 3 d, 7 d, 10 d and 15 d). A. euchroma is an endangered medicinal Himalayan herb whose root contains red naphthoquinone pigments. These phytoconstituents are widely used as an herbal ingredient in Asian traditional medicine as well as natural colouring agent in food and cosmetics. Results A total of 137.93 to 293.76 million raw reads were generated and assembled to 54,587 transcripts with average length of 1512.27 bps and N50 of 2193 bps, respectively. In addition, 50,107 differentially expressed genes were identified and found to be involved in plant hormone signal transduction, cell wall modification and wound induced mitogen activated protein kinase signalling. The data exhibited dominance of auxin responsive (AUXIN RESPONSE FACTOR8, IAA13, GRETCHEN HAGEN3.1) and sucrose translocation (BETA-31 FRUCTOFURANOSIDASE and MONOSACCHARIDE-SENSING protein1) genes during induction phase. In the initiation phase, the expression of LATERAL ORGAN BOUNDARIES DOMAIN16, EXPANSIN-B15, ENDOGLUCANASE25 and LEUCINE-rich repeat EXTENSION-like proteins was increased. During the expression phase, the same transcripts, with exception of LATERAL ORGAN BOUNDARIES DOMAIN16 were identified. Overall, the transcriptomic analysis revealed a similar patterns of genes, however, their expression level varied in subsequent phases of in vitro adventitious root formation in A. euchroma. Conclusion The results presented here will be helpful in understanding key regulators of in vitro adventitious root development in Arnebia species, which may be deployed in the future for phytochemical production at a commercial scale.


2020 ◽  
Vol 8 (2) ◽  
pp. 30-37
Author(s):  
Nguyen Tran Dong Phuong ◽  
Tran Thi Xuan Huong

Plumbago zeylanica L. is a traditional herbal that has been reported to treat on skin diseases. Furthermore, some researchers have found plumbagin extracted from roots of this species can prevent cancer cell development. In current study, stems of Plumbago zeylanica L. were cultured on MS medium with BA 1.0 mg/L and IAA (0.01-0.15 mg/L) or NAA (0.1-0.15 mg/L). After 8-week cultured, stems were transferred to MS medium with extracted from stems of Portulaca grandiflora Hook (2-10 ml/L) or extracted from stems of Ipomoea batatas (L.) Poir. The results showed that, the appropriate medium for shoot formation was in MS with BA and IAA 0.1 mg/L or NAA 0.1 mg/L. The adventitious roots in vitro were formatted in MS medium supplied with extracted from stems Portulaca grandiflora Hook or from stems of Ipomoea batatas (L.) Poir 6 ml/L. Simultaneously, after 8-week cultured, the adventitious roots were collected and plumbagin qualitative were analyzed with pure plumbagin of Sigma. As the results, plumbagin presents in adventitious roots cultured.


1986 ◽  
Vol 64 (1) ◽  
pp. 242-246 ◽  
Author(s):  
Jacques Vasseur ◽  
René Lefebvre ◽  
Enoch Backoula

On Cichorium intybus root explants of different size, it is possible to demonstrate the existence of a relation between the volume/surface ratio and adventitious root formation capacities. With a volume/surface ratio equal to one, the highest number of adventitious roots and percentage of explants able to produce roots have been observed. When this ratio deviates from unity, adventitious root formation declines. Cold storage of chicory roots causes breakdown of fructosans and accumulation of sucrose, glucose, and fructose. At the same time, adventitious root formation on explants cultured in vitro decreases. Inclusion of glucose in culture media increases adventitious root production whatever the duration of chicory root cold storage may have been. Results are discussed and the hypothesis of a regulation of adventitious roots by sucrose and reducing sugars is advanced.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1222-1223 ◽  
Author(s):  
Abba Upadhyaya ◽  
Tim D. Davis ◽  
Daksha Sankhla ◽  
N. Sankhla

Both kinetin and BA promoted in vitro shoot formation from hypocotyl explants of Lupinus texensis Hook. placed on Murashige and Skoog (MS) medium. With either cytokinin, shoot formation was best at ≈4.5 μm. Adventitious root formation was observed only on tissue culture-derived shoots placed in MS media containing 5.4 to 54 μM NAA. IAA and IBA, at concentrations ranging from 5 to 55 μm, failed to stimulate rooting. Even at the optimal concentration of NAA, only 14% of the shoots produced roots. Thus, although hypocotyl explants readily produced shoots, adventitious root formation on these shoots occurred with relatively low frequency. Chemical names used: 6-benzylaminopnrine (BA); indole-3-acetic acid (IAA); indole-3-butyric acid (IBA); 6-furfurylaminopurine (kinetin); 1-naphthaleneacetic acid (NAA).


1990 ◽  
Vol 78 (3) ◽  
pp. 474-483 ◽  
Author(s):  
Stefania Biondi ◽  
Teresa Diaz ◽  
Isabel Iglesias ◽  
Grazia Gamberini ◽  
Nello Bagni

2018 ◽  
Vol 17 (5) ◽  
pp. 405-411
Author(s):  
Jiraporn PALEE

To evaluate an efficient protocol for the micropropagation of Tupistra albiflora K. Larsen, the effects of N6-benzylaminopurine (BA) and naphthalene acetic acid (NAA) concentrations on multiple shoot and root induction were examined. In vitro shoots were used as the explant materials which were cultured on Murashige and Skoog (MS) agar medium supplemented with 0, 1, 2, 3 and 4 mg/L BA for 4 weeks to induce multiple shoots. It was found that the MS medium containing 3 mg/L BA induced 100 % shoot formation with the highest number of 3.2 shoots per explant (2.4-fold significantly higher than the control). For root induction, in vitro shoots were cultured on MS agar medium supplemented with 0, 1, 2, 3 and 4 mg/L NAA for 8 weeks. The results showed that the MS medium containing 1 mg/L NAA induced 100 % root formation with the highest number of 6.6 roots per explant (1.8-fold significantly higher than the control).


Sign in / Sign up

Export Citation Format

Share Document