scholarly journals SOMATIC EMBRYOGENESIS OF MUSSAENDA `QUEEN SIRIKIT'

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 251f-251 ◽  
Author(s):  
Christopher S. Cramer ◽  
Mark P. Bridgen

Disinfected midrib sections of Mussaenda `Queen Sirikit' ≈3 to 4 mm in size were cultured on a basal medium of Murashige and Skoog salts and vitamins, 87.7 mm sucrose, and 5 g Sigma agar/liter supplemented with several concentrations of indole-3-acetic acid (IAA) (0, 5.0, 10.0, 20.0 μm) and 6-benzylaminopurine (BAP) (0, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0 μm). Cultures were subculture onto the same treatment after 5 weeks and observed weekly for 15 weeks for the presence of somatic embryos. As somatic embryos were produced, they were subculture onto basal medium supplemented with 0.5, 1.0, 2.5, or 25.0 μm BAP. Callus was first observed at 2 weeks in cultures grown on basal medium supplemented with 5.0–20.0 μm IAA and 0–50.0 μm BAP. Somatic embryos were observed at 8 weeks on basal medium supplemented with 5.0–10.0 μm IAA and 2.5–5.0 μm BAP. Callus cultured on 0–10 μm IAA and 5.0–10.0 μm BAP produced the greatest number of somatic embryos by 15 weeks. Somatic embryos subculture to basal medium supplemented with 25.0 μm BAP proliferated shoots, while eliminating BAP from the medium resulted in root and callus production. Shoots and entire plants were removed from in vitro conditions and successful] y acclimated to greenhouse conditions. Somatic embryo-derived plants flowered sporadically 25 to 35 weeks after removal from in vitro conditions. Variations in sepal number and leaf number per node were observed at 1% to 5%.

1991 ◽  
Vol 116 (4) ◽  
pp. 753-757 ◽  
Author(s):  
Ana M. Vieitez ◽  
Carmen San-José ◽  
F. Javier Vieitez ◽  
Antonio Ballester

Somatic embryos were induced on the roots of Camellia japonica L. plantlets regenerated from an in vitro clone of juvenile origin. The embryos appeared to differentiate from epidermic cells and to be connected with the root via a few parenchymatous cells. Somatic embryogenesis occurred on basal medium and with or without various combinations of zeatin, BA, and IBA. Secondary embryos were induced on cotyledons and/or hypocotyl regions of somatic embryos. Two morphological types of somatic embryos were developed, seed-like and bud-like types, and their formation was influenced by the presence of BA in the medium. Embryogenic capacity has been maintained for more than 24 months by subculturing secondary embryos at 7- to 8-week intervals. The best gibberellin/auxin combination for inducing the germination of isolated somatic embryos was GA at 5 mg·liter-1 G A3 and IAA at 1 mg·liter-1. P1antlets were successfully established in planting medium and have continued to grow in a greenhouse. Chemical names used: N-(phenylmethyl)-1H-purine-6-amine (BA); (1α, 2β, 4aα, 4bβ, 10β)-2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid l,4a-lactone (GA); 1 H -indole-3-acetic acid (IAA); 1 H- indole-3-butyric acid (IBA); 2-methyl-4-(1 H- purine-6-ylamino)-2-buten-l-ol (zeatin).


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


1990 ◽  
Vol 68 (3) ◽  
pp. 487-491 ◽  
Author(s):  
N. Arumugam ◽  
Sant S. Bhojwani

In vitro multiplication of Podophyllum hexandrum Royle (Podophyllaceae) via somatic embryogenesis is reported. The callus derived from zygotic embryos on Murashige and Skoog medium containing 2 μM BA and 0.5μM IAA differentiated globular embryos. On this medium the globular embryos continued to multiply but failed to mature. Further development of the embryos occurred if the sucrose level in the basal medium was raised to 6% or the medium was supplemented with 1–10 μM NAA. Light and temperatures higher than 25 °C suppressed embryogenesis. Embryogenic potential of the callus has been maintained for over 20 months through subcultures. The somatic embryos developed into plantlets on the basal medium. Key words: endangered species, podophyllotoxin, Podophyllum, somatic embryogenesis.


2011 ◽  
Vol 78 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Emilia Andrzejewska-Golec ◽  
Joanna Makowczyńska

A vanishing species in Poland - <em>Plantago maritima</em> L. was regenerated in vitro from tips of shoots (obtained in vitro) and from different explants of 4-week-old seedlings: seedling tips, hypocotyls, cotyledons, roots. Murashige and Skoog basal medium, supplemented with 0.6 pM indole-3-acetic acid in combination with cytokinins 6-benzyladenine, zeatin or kinetin, was used. The plants obtained in the result of micropropagation were normal in appearence. It was proved that <em>Plantago maritima</em> species was amenable to propagation from different kinds of explants. The method may be of significance for protection of sea plantain.


2020 ◽  
Author(s):  
Zhengjie Liu ◽  
Xinwang Wang ◽  
Jinping Hua

Abstract Background: Cotton is one of the most genotype-dependent plants for regeneration, in order to expand cotton regeneration genotypes and establish efficient regeneration system platform, Jiwu 2031 (glandless cotton), ND 58 and CAU 102, were selected for studying the highly efficient somatic embryos formation and regeneration via solid-liquid alternating culture system.Results: In present research, the MSB medium (MS salts adding B5 vitamins) containing 0.571 µM indole-3-acetic acid (IAA), 0.465 µM kinetin (KT) and 0.904 µM 2, 4-dichlorophenoxyacetic acid (2, 4-D) was effective for callus initiation of fourteen Upland cotton with ‘Corker 201’ as the control. ‘Jiwu 2031’, ‘ND 58’ and ‘CAU 102’ could form somatic embryos and regenerate fertile plants in a solid MSB medium containing 10.31 mM NH4NO3, and supplemented with 0.027 mM glycin, 2.460 µM indole-3-acetic acid (IBA), 0.930 µM KT, 3.784 mM asparagine and 6.843 mM glutamine. Under the solid-liquid alternating culture system, the non-embryonic callus was induced to form embryonic callus and the identical status somatic embryos were obtained in 42 days, and the period for plants regeneration was shortened to 90~120 days, with the higher proportion of normal plant regeneration.Conclusions: The solid-liquid alternating culture method could increase the rate of embryogenesis and shorten the period of plants regeneration of Upland cotton. This work provides the evidence that the glandless cotton is beneficial for somatic embryogenesis (SE) and plant regeneration.


HortScience ◽  
1993 ◽  
Vol 28 (6) ◽  
pp. 672-673 ◽  
Author(s):  
S.A. Merkle ◽  
B.A. Watson-Pauley

Bigleaf magnolia (Magnolia macrophylla Michx.) cultures were initiated from immature seeds on an induction medium containing 9.0 μm 2,4-D, 1.1μm BA, and 1 g casein hydrolysate/liter. After 2 months on induction medium, one culture produced adventive embryos. Clumps of embryos transferred to liquid induction medium proliferated as nodules, which grew in diameter, but failed to produce embryos while maintained in induction medium. Nodules transferred to basal medium produced clumps of somatic embryos, which continued to produce repetitive embryos with monthly transfer to fresh basal medium. Individual embryos transferred to basal medium lacking casein hydrolysate germinated and leaves expanded. Plantlets derived from these embryos were transferred to potting mix and acclimatized to greenhouse conditions. Chemical names used: (2,4-dichlorophenoxy)acetic acid (2,4-D); N -(phenylmethyl)-lH-purin-6-amine (BA).


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1126-1128
Author(s):  
Dinum Perera ◽  
Brian W. Trader

Slow growth rate of plantlets, few micro-shoots per explant, and slow root growth rate are restrictions of in vitro propagation of poinsettia (Euphorbia pulcherrima Willd. ex Koltz). The purpose of this research was to develop an efficient in vitro proliferation technique for poinsettia ‘Prestige™ Red’. Explants (apical buds and axillary buds) placed on Murashige and Skoog (MS) basal medium containing only 6-benzylaminopurine (BA) and combinations of BA and indole-3-acetic acid (IAA) mostly produced red callus, which is productive and some white and gray–green calluses at the base of plantlets after 1 month, whereas explants in a medium without plant growth regulators (PGRs) produced no callus. Addition of IAA into the rooting medium increased rooting efficiency; plantlets grown in half-strength MS salts and vitamins with 28.5 μM IAA initiated rooting 11 days earlier than the plantlets grown with no PGRs. Optimization of PGR concentrations during poinsettia micropropagation helped resolve previous restrictions of in vitro poinsettia proliferation. Chemical names used: 6-benzylaminopurine (BA); indole-3-acetic acid (IAA)


1971 ◽  
Vol 49 (3) ◽  
pp. 449-452 ◽  
Author(s):  
J. C. Forest ◽  
Margaret E. McCully

The direct addition of indole-3-acetic acid and sucrose into sterile-cultured segments of tobacco pith via micropipettes has induced cell division and vascularization in a specific arrangement below the tip of the micropipette. The histology of this vascularization is described and it is shown that the orientation of the explant on the basal medium influences callus and bud formation.


2021 ◽  
Author(s):  
Thiago Sanches Ornellas ◽  
Yohan Fritsche ◽  
Edison Cardona Medina ◽  
Miguel Pedro Guerra

Abstract Bamboos are an important worldwide non-timber forest product with current rising interest due to their environmentally friendly applications. Besides the consolidated uses of the sweet shoots and culms for structural uses, Dendrocalamus asper is an imposing ornamental bamboo for horticulture. The present work aimed to establish in vitro calli culture and plant regeneration through somatic embryogenesis starting from young inflorescences of the giant bamboo, D. asper. Pre-anthesis inflorescences were collected, disinfested, and subjected to callus induction on MS basal medium supplemented by 0 µM, 9 µM, 18 µM, 27 µM, and 36 µM of 2,4-D in combination with 9 µM of 2-iP or 9 µM Kin. The different obtained calli types were characterized and subcultured in 0 µM, 4.5 µM, 9 µM, and 18 µM of 2,4-D in combination with 9 µM of both cytokinins for multiplication and differentiation. Additionally, the explant incision and its inoculation orientation onto culture media were tested for callus induction improvement. The 2,4-D was essential for callus induction, and its combination with both cytokinins resulted in embryogenic callus induction and further somatic embryos regeneration. The subsequent reduction of this auxin to 4.5 µM resulted in somatic embryo maturation. Somatic embryos transferred to a plant growth regulator-free medium resulted in plantlet conversion. The present work showed the feasibility of using inflorescences as explants and the efficiency of using the 2-iP in combination with 2,4-D to callus induction and in vitro bamboo plant regeneration through somatic embryogenesis.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1078A-1078
Author(s):  
Qian Zhang ◽  
Jianjun Chen ◽  
Richard J. Henny

Homalomena `Emerald Gem' is an important ornamental foliage plant and widely used for interior plantscaping. Current propagation of this cultivar has been primarily carried out through in vitro culture by organogenesis; regeneration through somatic embryogenesis has not been documented. This report describes successful plant regeneration via direct somatic embryogenesis from explants of different organs. Somatic embryos formed at and around the cut surface of petiole, spathe, and peduncle explants. Embryos also appeared at the base between expanded ovaries of the spadix segment, and around midrib of leaf explants. The optimal treatments for somatic embryo occurrence from petiole, spathe, and peduncle explants were MS medium containing 0.2 mg/L NAA or 0.5 mg/L 2, 4-D with 2.0 mg/L CPPU, and for spadix explants were MS medium with 0.5 mg/L PAA and 2.5 mg/L TDZ. Somatic embryos appeared 6 to 8 weeks after culture and formed large embryo clumps in 3 to 4 months. Somatic embryos produced more secondary embryos and geminated on induction medium. Multiple shoot development and plant regeneration occurred from somatic embryo clusters on MS medium without hormone or with 2 mg/L BA and 0.2 mg/L NAA. The regenerated plants grew vigorously after transplanting to a soilless container substrate in a shaded greenhouse.


Sign in / Sign up

Export Citation Format

Share Document