scholarly journals 492 PB 166 DETERMINATION OF WATER UPTAKE INTO PEAT MEDIA USING LOADCELLS

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 501g-502
Author(s):  
Troy M. Buechel ◽  
David J. Beattie ◽  
E. Jay Holcomb

A characteristic problem with peat moss is its difficulty in initial wetting and rewetting, especially in a subirrigation system. Wetting agents improve wetting characteristics primarily by reducing the surface tension of water. This results in a rapid, uniform movement of water by capillary rise through the growing medium. Two methods were used to compare the effectiveness of different wetting agents: gravimetric and electrical. Ten cm pots containing peat moss were placed in a subirrigation system. The gravimetric method used a laboratory scale where pots were periodically weighed to determine the amount of water absorbed. The electrical method utilized thin beam load cells, which have strain gages bound to the surface, to determine the weight of a suspended object. Load cells were coupled with a Campbell Scientific datalogger to collect data every minute without removing the pot from subirrigation. Because the effect of buoyancy altered the true weights, equations were generated to adjust the water uptake values. Corrected weights were used to create absorption curves for comparison of the slopes to determine which wetting agent has the fastest rate of absorption. The load cell reliably and accurately described the wetting characteristics of Peat moss and we found good agreement with the gravimetric method.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 878C-878 ◽  
Author(s):  
Luis A. Valdez-Aguilar* ◽  
David Wm. Reed

Tolerance to alkalinity was evaluated in Rose `Pink Cupido', Vinca `Apricot Delight', Chrysanthemum `Miramar', and Hibiscus `Bimini Breeze' and `Mango Breeze'. Plants were potted in a sphagnum peat moss-based growing medium and irrigated with water containing 0, 2.5, 5, 7.5 and 10 mm of Na bicarbonate. In rose, shoot mass was significantly decreased and chlorosis increased at the 5 mm treatment, indicating that the alkalinity toxicity is between 2.5 and 5 mm. In chrysanthemum, the concentration of Na bicarbonate did not significantly affect shoot mass, but caused a significant increase in leaf chlorosis at 5 mm or higher Na bicarbonate. This indicates an alkalinity toxicity level between 2.5 and 5 mm. In Vinca, shoot dry mass was not affected significantly, but leaf chlorosis was significantly increased with 5 mm of Na bicarbonate. This indicates an alkalinity toxicity level between 2.5 and 5 mm. In hibiscus `Mango Breeze', shoot mass was significantly increased at 2.5 and 5 mm, but was significantly decreased at 7.5 mm and above. Leaf chlorosis was significantly increased with a concentration of 5 mm and above, indicating that in hibiscus `Mango Breeze' the alkalinity toxicity level is between 5 to 7.5 mm. In hibiscus `Bimini Breeze', shoot mass was not significantly reduced, but leaf chlorosis exhibited a significant decrease at 7.5 mm. this indicates that in hibiscus `Bimini Breeze' the alkalinity toxicity level is between 7.5 and 10 mm. Growing medium pH increased with increasing levels of Na bicarbonate. The species showed varying capacity for acidification of the growing medium. All species, except rose and vinca, neutralized the alkalinity effect of 2.5 mm, but none of the species neutralized the effect of 5 mm and higher Na bicarbonate.


Sign in / Sign up

Export Citation Format

Share Document