total carbon content
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 43)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuyi Yang ◽  
Chao Zhang ◽  
Xiaoli Ma ◽  
Qianjin Liu ◽  
Juan An ◽  
...  

Soil deterioration, low nitrogen use efficiency (NUE), and environmental risks caused by excessive chemical N fertilizer use are key factors restricting sustainable agriculture. It is extremely critical to develop effective N management strategies that consider both environmental and agronomic benefits. From 2017 to 2019, a field experiment was conducted to assess the effects of combinations of organic fertilizers (OF, provided at 30, 50, and 70% of the total applied N) and controlled-release urea (CU) on the NUE, N leaching and wheat yield compared with the effects of urea and CU. The results suggested that OF released N slowly in the early stage and showed a significant residual effect, while CU released N quickly in the first 2 months. The OF substitutes with 30–50% CU increased wheat yield by 4.2–9.2%, while the 70%OF+30%CU treatment showed no significant difference relative to the urea treatment. The average maximum apparent NUE recovery (50.4%) was achieved under the 50%OF+50%CU treatment, but the partial factor productivity was not affected by the N type. As the OF application rate increased, the total carbon content increased, and the total N value decreased. The NO3−-N and NH4+-N concentrations in the OF+CU treatments were lower before the jointing stage but higher from the grain-filling to mature stages than those in the urea treatment. NO3−-N and NH4+-N were mainly concentrated in the 0–60-cm layer soil by OF substitution, and N leaching to the 60–100-cm soil layer was significantly reduced. Hence, the results suggest that the combination of 30–50% OF with CU synchronizes absorption with availability due to a period of increased N availability in soils and proved to be the best strategy for simultaneously increasing wheat production and reducing N leaching.


2021 ◽  
Vol 13 (4) ◽  
pp. 1198-1205
Author(s):  
B. Karthikeyan ◽  
B. Bhakiyathu Saliha ◽  
P. Kannan ◽  
S. Vellaikumar

Biochar is considered as a possible and potential tool for soil fertility improvement, climate change mitigation and long term sink for atmospheric carbon dioxide. Soil application of biochar enhances the soil properties indirectly. A field experiment was conducted to evaluate the influence of organic manures viz., Farm Yard Manure (FYM), Vermicompost, Biochar, Biochar composite on soil properties, growth and yield of bhendi, Abelmoschus esculentus in Somayyanur soil series of Madurai district, Tamil Nadu. The experiment was laid out in randomized block design (RBD) with eleven treatments and three replications during the summer season (March – June) 2021 with the inclusion of inorganic fertilizers based on soil test crop response (STCR) based recommendation. Application of biochar composite (5 t ha-1) along with STCR based NPK (75% STCR) increased the total carbon content in soil by 0.538 %. This, in turn, increased the available nitrogen status to 295 and 244 Kg ha-1 at 40 and 70 DAS, respectively. Similarly, the available phosphorous (22.4, 19.3 Kg ha-1) and potassium (344.70, 323.70 Kg ha-1) status also showed a considerable increase with the same treatment. The yield attributes of bhendi viz., fruit length, girth, weight, dry matter production and yield recorded maximum values of 15.23 cm, 6.93 cm, 21.56 g, 11.9 t ha-1 and 25.20 t ha-1 with the combined application of biochar composite and NPK. The findings revealed that 25 % STCR based NPK could be reduced with the application of 5 t ha-1 of biochar composite, which is economically an option besides promoting soil health.


Author(s):  
Clara Rosy Irawati ◽  
I Nyoman Merit ◽  
I Made Sudarma

Sediments play an important role in coastal ecosystems. Apart from being a growing medium, sediment is also a place for accumulation and storage of various components including carbon. Ngurah Rai Forest Park is the largest mangrove in Bali with a large potential for sediment carbon stocks. To determine the carbon storage of mangrove sediments in natural forest and rehabilitation forest and the relationship between diameter size and vegetation type to sediment carbon in two forest types, a study was conducted using purposive sampling method based on canopy density level with three repetitions with a plot size of 10 mx. 10 meters. Sampling was divided into three depths, namely 0-30 cm, 31-60 cm and 61-100 cm. The total carbon content of mangrove sediments in natural forest is 363,491.17 Mg C or equivalent to 363,491.17 tons C and rehabilitation forest is 160,401.33 Mg C or equivalent to 160,401.33 tons C. The total sediment carbon content in Ngurah Rai Forest Park is 523,892.50 Mg C or equivalent to 523,892.50 tons C. Tree diameter had no significant effect on sediment carbon content, while vegetation type significantly affected sediment carbon content. Sonneratia alba had a significant negative effect on natural forests, while Rhizophora stylosa had a significant positive effect on rehabilitation forests. The results of the study suggest that it is necessary to maintain the preservation of mangroves and carry out rehabilitation in damaged areas. To increase the carbon content of sediments in mangrove forests, consider selecting the type of vegetation Rhizophora stylosa for the implementation of rehabilitation activities, because the type of Rhizophora stylosa makes a positive contribution to increasing the carbon content of sediments, with a note that the rehabilitation location is suitable for Rhizoporaceae species. Keywords: Mangrove; Nature Forest; Rehabilitation; Sediment.


Author(s):  
Made Suartana ◽  
I Nyoman Merit ◽  
I Made Sudarma

Mangroves are ecosystems that play an important role in absorbing and storing carbon from the air, one of which is in the form of mangrove vegetation biomass. As the largest mangrove area in Bali which consists of natural and rehabilitation vegetation, Taman Hutan Raya Ngurah Rai has a large potential for high carbon content. To determine the carbon potential of mangroves in natural and rehabilitation forests, a research was conducted using the purposive sampling method based on the canopy density level which was divided into 5 categories, namely very rare, rare, moderate, dense, very dense. Based on the results of measurements and calculations, the total carbon content of Ngurah Rai Grand Forest Park is 86.521,74 tons C, consisting of natural forest content 66.857,53 tons C and rehabilitation forest 19.664,21 tons C. Above ground carbon per hectare in natural forest was not significantly different from the above ground carbon per hectare in rehabilitation forest, these results indicate that the carbon content per hectare of rehabilitation forest over 20 years old is almost close to the carbon content per hectare in natural forest. The diameter of trees and vegetation types did not significantly affect the carbon content of mangroves, these results indicate that the increase in carbon stocks in each type of vegetation in natural and rehabilitation forests is in line with diameter growth. Keywords: Biomass; Density; Diameter; Canopy.


2021 ◽  
pp. 196-213
Author(s):  
I Gusti Ayu Sintia Dewi ◽  
Abdul Syukur ◽  
I Gde Mertha

through the development of carbon zinc as an organic material produced from photosynthesis and stored and transported in the form of seagrass vegetation biomass. Seagrass is one of the aquatic vegetation that is able to absorb and store carbon. Seagrasses have the ability to absorb carbon through the process of photosynthesis. The purpose of this study was to describe the potential carbon content of seagrass species in the South Coastal Waters of East Lombok. This type of research is an expolarative descriptive research. The research method is a quadratic transect method. The population of this study were all seagrass species contained in 3 research stations. The collected data was then analyzed using analysis of seagrass species composition, seagrass cover, seagrass density, diversity, uniformity, dominance and analysis of carbon content through seagrass stand biomass (leaves, rhizomes/stems and roots). The result of this research is the discovery of 9 species of seagrass on Lungkak Beach and 5 species of seagrass on Gili Kere and Poton Bakau. The species density in the three study sites ranged from 0.09 to 56.91 stands/m2. Seagrass biomass values ranged from 1.47-261.9 gbk/m2 and total carbon content ranged from 295.91±202.88 gC. The value of this biomass and carbon content was dominated by seagrass species with large morphology such as Enhalus acroides, Thalasia hemprici, Cymodocea rotundata, and Cymodocea cerillata and high density and cover values of seagrass. The relationship between seagrass cover and seagrass carbon has a significant relationship where the higher the seagrass cover, the higher the carbon content of the seagrass.


Quaternary ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 32
Author(s):  
Ruslan Suleymanov ◽  
Gulnara Obydennova ◽  
Andrey Kungurtsev ◽  
Niyaz Atnabaev ◽  
Mikhail Komissarov ◽  
...  

This paper presents the results of studying the soils at the archeological site of the Tyater-Araslanovo-II settlement located in the Republic of Bashkortostan, eastern European Russia. The settlement functioned in the 15th–12th centuries BCE (the Late Bronze Age). We compared the soil properties at four sites in the study area: archeological (1), buried (2), affected by long pyrogenic exposure (3), and background site (4). In soil samples, the total carbon content, the fractional composition of humus and organic matter characteristics, alkaline hydrolyzable nitrogen, total phosphorus, mobile phosphorus, potassium, absorbed calcium and magnesium, pH, particle size distribution, basal soil respiration, and optical density were estimated. The study results showed the anthropogenic impact on the archeological site’s soils. The newly formed AU horizon at the archeological site (1), affected by the cattle summer camp, was richer in soil nutrients and agrochemical properties, namely, the content of exchangeable and gross forms of phosphorus, alkaline hydrolyzable nitrogen, and exchange cations of the soil absorbing complex compared to the reference soil (4). For the pyrogenic layer (AU[hh]pyr) from the ancient furnace (fireplace) (3), the mobile and total forms of phosphorus were several times higher than those in the reference soil (4) but inferior regarding other agrochemical parameters. Thus, the activities of ancient people (especially cattle breeding) greatly influenced the properties of the soil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Simona Proietti ◽  
Stefano Moscatello ◽  
Francesca Riccio ◽  
Peter Downey ◽  
Alberto Battistelli

Light-emitting diode lamps can allow for the optimization of lighting conditions in artificial growing environments, with respect to light quality, quantity, and photoperiod extension, to precisely manage resources and crop performance. Eruca vesicaria (L.) Cav. was hydroponically cultured under three light treatments to investigate the effect on yield and nutritional properties of rocket plants. A treatment of (W-12h) having a12/12 h light/dark at 600 μmol m−2 s−1 provided by LEDs W:FR:R:B = 12:2:71:15 was compared with two treatments of continuous lighting (CL), 24 h light at 300 μmol m−2 s−1 provided by cool white LEDs (W-CL), and by LED R:B = 73:27 (RB-CL). CL enhanced the growth of the rocket plants: total fresh biomass, leaf fresh weight, and shoot/root ratio increased in W-CL, and leaf dry weight, leaf dry matter %, root fresh and dry weight, and specific leaf dry weight (SLDW) increased in RB-CL. Total carbon content was higher in RB-CL, whereas total nitrogen and proteins content increased in W-12h. Both W-CL and RB-CL increased carbohydrate content in the rocket leaves, while W-CL alone increased the sugar content in the roots. Fibers, pigments, antioxidant compounds, and malic acid were increased by CL regardless of the light spectrum applied. Nitrate was significantly reduced in the rocket leaves grown both in W-CL and RB-CL. Thus, the application of CL with low light intensity can increase the yield and quality value of rocket, highlighting that careful scheduling of light spectrum, intensity, and photoperiod can improve the performance of the crop.


2021 ◽  
Vol 7 (10) ◽  
pp. 791
Author(s):  
Nan Yang ◽  
Bo Wang ◽  
Dong Liu ◽  
Xuan Wang ◽  
Xiuxiu Li ◽  
...  

The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha−1 yr−1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.


2021 ◽  
Author(s):  
Milena Cambronero ◽  
Gerardo Avalos ◽  
Carolina Alvarez-Vergnani

Abstract We present allometric models to estimate total carbon content and above ground carbon (AGC) for the family Arecaceae, and for 7 abundant neotropical palm species (the canopy species Socratea exorrhiza and Iriartea deltoidea , the sub-canopy palm Euterpe precatoria , and the understory species Asterogyne martiana , Prestoea decurrens , Geonoma interrupta and Chamaedorea tepejilote ). The study was done in the tropical rainforests of the Caribbean slope of Costa Rica. We harvested 87 individuals of a wide range of sizes, and divided them into roots, stems, and leaves, weight their fresh and dry biomass, calculated the carbon content, tissue density, leaf area, and shoot:root ratios (based on biomass and carbon content). The general palm model estimating total carbon content accounted for 92% of the variation and had diameter at breast height, stem height, and dry mass fraction as predictor variables. We generated a similar model to estimate AGC, which included the same variables and explained 91% of the variation. We compared our AGC model with two models used to estimate palm carbon content: Goldman et al. (2013)´s and Chave et al. (2014)´s models and found a range of R 2 values ​​of 0.87 to 0.91. Understory palm allometry was centered around biomass allocation, whereas sub-canopy and canopy species were associated with traits related to palm size (mainly DBH, total height, and leaf area). The efficiency the allometric models depends on species identity, sample size, and size range.


2021 ◽  
Vol 42 ◽  
pp. 3-8
Author(s):  
Horea Florin Chicinaş ◽  
Darius Ovidiu Jucan ◽  
Glad Contiu ◽  
Cătălin Popa

Materials consisting of a hard phase, usually WC, and a tough binder, traditionally Co, form the most successful class of composite materials, also known as Hard Metals (HM) or Cemented Carbides. Powder metallurgy routes are employed generally for the production of such [1]. The typical processing route of such materials involves mixing the components, kneading and consolidation. Alcohols, alkanes and alkenes are commonly used to limit any excessive heating and oxidation of powders during mixing the components. In this study, we report the results of milling in a more environmentally friendly aqueous milling media. The obtained results are presented comparatively with milling under a traditional media, such as isohexane and acetone. The characterization of the milled samples has been done from the structural, compositional and morphological point of view. Considering our previous results, an important aspect of the milled powder is the carbon content, which dictates the sintering behavior of such parts. The carbon balance investigation performed on a carbon analyzer has revealed no significant differences upon changing the milling media. This work emphasizes the influence of the milling media on the HM powder. HM powders with similar properties have been obtained both by traditional and aqueous milling. The comparative study has revealed that the substitution of the traditional milling media does not influence the carbon content in the HM powder.


Sign in / Sign up

Export Citation Format

Share Document