scholarly journals Determination of the Alkalinity Toxicity Limits of Selected Greenhouse Ornamental Plants

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 878C-878 ◽  
Author(s):  
Luis A. Valdez-Aguilar* ◽  
David Wm. Reed

Tolerance to alkalinity was evaluated in Rose `Pink Cupido', Vinca `Apricot Delight', Chrysanthemum `Miramar', and Hibiscus `Bimini Breeze' and `Mango Breeze'. Plants were potted in a sphagnum peat moss-based growing medium and irrigated with water containing 0, 2.5, 5, 7.5 and 10 mm of Na bicarbonate. In rose, shoot mass was significantly decreased and chlorosis increased at the 5 mm treatment, indicating that the alkalinity toxicity is between 2.5 and 5 mm. In chrysanthemum, the concentration of Na bicarbonate did not significantly affect shoot mass, but caused a significant increase in leaf chlorosis at 5 mm or higher Na bicarbonate. This indicates an alkalinity toxicity level between 2.5 and 5 mm. In Vinca, shoot dry mass was not affected significantly, but leaf chlorosis was significantly increased with 5 mm of Na bicarbonate. This indicates an alkalinity toxicity level between 2.5 and 5 mm. In hibiscus `Mango Breeze', shoot mass was significantly increased at 2.5 and 5 mm, but was significantly decreased at 7.5 mm and above. Leaf chlorosis was significantly increased with a concentration of 5 mm and above, indicating that in hibiscus `Mango Breeze' the alkalinity toxicity level is between 5 to 7.5 mm. In hibiscus `Bimini Breeze', shoot mass was not significantly reduced, but leaf chlorosis exhibited a significant decrease at 7.5 mm. this indicates that in hibiscus `Bimini Breeze' the alkalinity toxicity level is between 7.5 and 10 mm. Growing medium pH increased with increasing levels of Na bicarbonate. The species showed varying capacity for acidification of the growing medium. All species, except rose and vinca, neutralized the alkalinity effect of 2.5 mm, but none of the species neutralized the effect of 5 mm and higher Na bicarbonate.

2013 ◽  
pp. 67-80
Author(s):  
Branislav Kovacevic ◽  
Dragana Miladinovic ◽  
Marina Katanic ◽  
Zoran Tomovic ◽  
Sasa Pekec

The effect of low initial medium pH on shoot and root development of five white poplar (Populus alba L.) genotypes was tested. The shoot height, fresh mass of shoots per jar, dry mass of shoots per jar, number of roots, as well as the length of the longest root were measured and final pH of the media determined, after 35 days of culture in vitro. Three initial pH values of the medium were tested: 3.0, 4.0 and 5.5 as control. Agar solidification at pH 3.0 was not achieved after sterilization in autoclave, but it was successful after sterilizing in a microwave oven. The obtained results indicate that the tested genotypes are able to significantly influence the changes of media pH during culture. The effect of differences among the examined media was significant for biomass accumulation and final media pH. Generally, significantly higher values of fresh and dry shoot mass, shoot height and the longest root length were recorded on a medium with initial pH 3.0 then on a standard medium with pH 5.5.The implications of the obtained results for the improvement of in vitro propagation of white poplars are discussed.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 501g-502
Author(s):  
Troy M. Buechel ◽  
David J. Beattie ◽  
E. Jay Holcomb

A characteristic problem with peat moss is its difficulty in initial wetting and rewetting, especially in a subirrigation system. Wetting agents improve wetting characteristics primarily by reducing the surface tension of water. This results in a rapid, uniform movement of water by capillary rise through the growing medium. Two methods were used to compare the effectiveness of different wetting agents: gravimetric and electrical. Ten cm pots containing peat moss were placed in a subirrigation system. The gravimetric method used a laboratory scale where pots were periodically weighed to determine the amount of water absorbed. The electrical method utilized thin beam load cells, which have strain gages bound to the surface, to determine the weight of a suspended object. Load cells were coupled with a Campbell Scientific datalogger to collect data every minute without removing the pot from subirrigation. Because the effect of buoyancy altered the true weights, equations were generated to adjust the water uptake values. Corrected weights were used to create absorption curves for comparison of the slopes to determine which wetting agent has the fastest rate of absorption. The load cell reliably and accurately described the wetting characteristics of Peat moss and we found good agreement with the gravimetric method.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1125A-1125
Author(s):  
Melanie L. Welles ◽  
David E. Hartley ◽  
Steven E. Newman

The purpose of this experiment was to examine the effects of various root-zone temperatures and pH on Impatiens ×hybrida, New Guinea impatiens `Celebration Orange.' Greenhouse growers need to be cognizant of the root-zone medium pH, as New Guinea impatiens are sensitive to nutrient toxicities at low pH. It is thought that limestone at low root-zone medium temperatures is not quickly activated, leading to toxicities. The objectives of this project were to determine: the effect of root-zone medium pH on foliar symptoms of iron and manganese toxicity; and the effective rates and grind size of limestone on root-zone medium pH. Various rates of limestone and different grind sizes were incorporated into a sphagnum peat moss-based medium at a range of temperatures. This experiment used a two-way thermogradient plate to maintain varying, but stable root-zone medium temperatures, ranging from 12 to 42 °C. Plant growth as well as root-zone medium pH was monitored. Changes in root-zone medium pH were monitored over time. Results indicated that the addition of moderate or high rates of limestone, 6 or 3 kg·m-3, provided stable root-zone media pH over the course of time. Both limestone grind sizes at 325 and 100–200 mesh provided satisfactory starting and ending pH values for healthy New Guinea impatiens growth, especially between the root-zone temperatures of 30 and 18 °C. Higher and lower temperature extremes inhibited root growth, resulting in lower quality plants.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 754A-754
Author(s):  
G.O. Hood

Canadian sphagnum peat moss has long been the preferred base for growing media of horticulturists in North America and Europe. Growers, horticultural scientists, and soil media producers have been using peat moss for several decades with excellent results. In the past 5 years, there has been some concern raised, especially in the U.K., that harvesting peat is harmful to the environment. The situation in Canada is far different from that in Europe. The Canadian peat industry is a world leader in restoration research because of its efforts to find the best ways to return harvested bogs to functioning wetlands. The first stage of research just completed by Laval Univ. shows that peat bogs can be effectively, economically, and easily restored. Additional research findings will be described in this paper. But, the conclusion is clear: Peat moss is a safe, environmentally friendly growing medium. This paper also will describe the state of resource in Canada as outlined by an independent environmental group, the steps taken by the Canadian Sphagnum Peat Moss Assn. to ensure that resource development is sustainable, as well as the process of how peat is harvest and how bogs are restored to functioning wetlands.


2007 ◽  
Vol 6 (3) ◽  
pp. 205-209 ◽  
Author(s):  
Angelica Kicsi ◽  
Doina Bilba ◽  
Matei Macoveanu

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 194 ◽  
Author(s):  
Ayesha Manzoor ◽  
Touqeer Ahmad ◽  
Muhammad Bashir ◽  
Ishfaq Hafiz ◽  
Cristian Silvestri

Polyploidy has the utmost importance in horticulture for the development of new ornamental varieties with desirable morphological traits referring to plant size and vigor, leaf thickness, larger flowers with thicker petals, intense color of leaves and flowers, long lasting flowers, compactness, dwarfness and restored fertility. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. Usually, natural polyploid plants are unavailable, so polyploidy is induced synthetically with the help of mitotic inhibitors. Colchicine is a widely used mitotic inhibitor for the induction of polyploidy in plants during their cell division by inhibiting the chromosome segregation. Different plant organs like seeds, apical meristems, flower buds, and roots can be used to induce polyploidy through many application methods such as dipping/soaking, dropping or cotton wool. Flow cytometry and chromosome counting, with an observation of morphological and physiological traits are routine procedures for the determination of ploidy level in plants.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1076
Author(s):  
Döme Barna ◽  
Szilvia Kisvarga ◽  
Szilvia Kovács ◽  
Gábor Csatári ◽  
Ibolya O. Tóth ◽  
...  

Organic and ecological farming programs require new and efficient biostimulants with beneficial properties for the sustainable and safe production of seedlings and ornamental plants. We examined the effect of non-fermented and lacto-fermented alfalfa brown juice (BJ) on seed germination and the vegetative, physiological, and anatomical properties of French marigold (Tagetes patula L. ‘Csemő’) plants which were treated with 0.5–10% fermented and non-fermented BJ, with tap water applied as a control. Applying 0.5% fermented BJ significantly improved seed germination compared with non-fermented BJ, resulting in an increase of 9.6, 11.2, 10.9, and 41.7% in the final germination percent, germination rate index, germination index, and vigor index, respectively. In addition, it increased the root and shoot length by 7.9 and 16.1%, respectively, root and shoot dry mass by 20 and 47.6%, respectively, and the number of leaves by 28.8% compared to the control. Furthermore, an increase in contents of water-soluble phenol, chlorophyll a and b, and carotenoid was reported upon the application of 0.5% fermented BJ, while peroxidase activity decreased. Our results prove that alfalfa BJ can be enrolled as a biostimulant as part of the circular farming approach which supports the sustainable horticultural practice.


2016 ◽  
Vol 20 (1) ◽  
pp. 13-22
Author(s):  
Beata Brzychczyk ◽  
Zbigniew Kowalczyk ◽  
Jan Giełżecki

AbstractThe objective of the paper was to analyse the use of the designed photobioreactor for freshwater microalgae cultivation in the controlled laboratory conditions. The work covered the design and construction of photobioreactors (PBR) and setting up comparative cultivations of freshwater microalgae chlorelli vulgaris along with determination of the biomass growth intensity for a varied amount of supplied culture medium. It was found out that the constructed PBR may be used for microalgae cultivation in the controlled conditions. The impact of the culture medium amount on the growth of chlorelli vulgaris was proved. As a result of the increase of culture medium concentration to 30.1-120.4 ml·l−1 of water, dry mass in photobioreactorsincreased respectively from 1.33 g·dm−3 to 4.68 g·dm−3.


2009 ◽  
Vol 71 (S208) ◽  
pp. 33c-39c
Author(s):  
Enping Chen ◽  
Jang-Hyun Chung ◽  
Per G. Söderberg ◽  
Bo Lindström
Keyword(s):  

1988 ◽  
Vol 34 (2) ◽  
pp. 131-133 ◽  
Author(s):  
Yvon Cormier ◽  
Anne Mériaux ◽  
Gilles Brochu

We studied the microflora of Quebec sphagnum peat moss samples taken from five different locations in a peat moss processing plant: soil, drying stacks, sedimented dust (walls and floor), and in bagged peat moss. Large numbers of microorganisms were found; the predominant ones were of the genus Monocillium (up to 112 × 106 colonies/g of dry peat) and the genus Penicillium (320 × 104 colonies/g dry weight). These moulds were more abundant in the processed peat moss than in the peat soil (e.g., Monocillium: soil, 138 × 103; processed peat, 112 × 106). Aspergillus spp. were absent in all five sample sites. We conclude that Quebec peat moss contains large quantities of microorganisms and that moulds become more concentrated during the processing of the peat from the soil to the final product.


Sign in / Sign up

Export Citation Format

Share Document