scholarly journals Factors Influencing Shoot Regeneration and ß-Glucuronidase Expression from `Royal Gala' Apple Internodes

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 442B-442
Author(s):  
Qingzhong Liu ◽  
Sarbagh Salih ◽  
Freddi Hammerschlag

Factors influencing regeneration and ß-glucuronidase expression from apple (Malus × domestica Borkh.) stem internodes were studied as part of a program to develop transgenic `Royal Gala' apple with improved disease resistance. The early stages of the transformation process were monitored by counting the number of ß-glucuronidase (GUS) expressing zones immediately after co-cultivation of explants with Agrobacterium tumefaciens supervirulent strain EHA105 (p35SGUS_INT) and by counting the number of GUS-expressing calli developing on explants 2 weeks after co-cultivation. Etiolated shoots were produced from in vitro shoots cultured for 2 weeks in the light followed by 2 weeks in the dark and were compared with shoots cultured for 4 weeks in the light (green shoots). First internodes from etiolated shoots produced three, 10 and 100 times the number of shoots regenerated from second, third, and fourth internodal explants, respectively, and produced seven times the number of shoots compared with similar explants from green shoots. 100% of first internodes from etiolated shoots exhibited GUS-expressing zones and yielded twice as many GUS-expressing zones when compared with leaf explants from green shoots, which exhibited GUS-expressing zones in only 60% of the explants. An average of nine GUS-expressing calli per explant were produced on first internodes from etiolated shoots 2 weeks after co-cultivation.

HortScience ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 193-201 ◽  
Author(s):  
Ana Carolina Espinosa ◽  
Paula M. Pijut ◽  
Charles H. Michler

A complete regeneration protocol was developed for Prunus serotina Ehrh., an important hardwood species for timber and sawlog production in the central and eastern United States. Nodal sections were cultured on Murashige and Skoog (MS) medium supplemented with 4.44 μm 6-benzylaminopurine (BA), 0.49 μm indole-3-butyric acid (IBA), and 0.29 μm gibberellic acid (GA3). In vitro leaf explants of three genotypes were placed on woody plant medium (WPM) supplemented with 0, 2.27, 4.54, or 6.81 μm thidiazuron (TDZ) in combination with 0, 0.54, 1.07, or 5.37 μm naphthaleneacetic acid (NAA), and on WPM supplemented with 0, 4.44, 8.88, or 13.32 μm BA in combination with 0, 0.54, 1.07, or 5.37 μm NAA. Cultures were maintained either in continuous darkness for 5 weeks, or in the dark for 3 weeks and then transferred to a 16-hour photoperiod. TDZ and the genotype had a significant effect on the number of shoots regenerated. The maximum mean number of shoots regenerated per explant (5.05 ± 1.14) was obtained with 2.27 μm TDZ plus 0.54 μm NAA with the 3-week dark period then light treatment. The highest percent shoot regeneration (38.3) and mean number of shoots (4.13 ± 0.97) was obtained with 6.81 μm TDZ plus 1.07 μm NAA. The highest rooting (27%) of adventitious shoots and number of roots per shoot (2.3 ± 0.2) was obtained with 2.5 μm IBA when shoots were maintained for 7 days in the dark on rooting medium before transfer to a 16-hour photoperiod. The highest rooting (70%) of nodal explant-derived stock cultures and number of roots per shoot (2.7 ± 0.9) was also obtained with 2.5 μm IBA, but when shoots were maintained for 4 days in the dark before transfer to a 16-hour photoperiod. In total, 86% of the plantlets survived acclimatization to the greenhouse and 100% survival after overwintering in cold-storage.


1970 ◽  
Vol 19 (2) ◽  
pp. 143-150
Author(s):  
Arunkumar B. Sonappanavar ◽  
M. Jayaraj ◽  
Asha N. Bagadekar ◽  
Anant V. Bhandarkar

Indirect regeneration of plant was obtained through organogenesis in leaf callus cultures of Ionidium suffruticosum. Leaf explants were found to be best suited for callus induction on MS with 2, 4-D (0.5 and 1.0 mg/l). Maximum shoot regeneration was obtained in MS supplemented with Kn (4.0 mg/l) alone and NAA (0.4 mg/l) with Kn (2.0 m/l).  The in vitro shoots thus obtained were successfully rooted in MS supplemented with Kn (4.0 mg/l) alone and with NAA (2.0 mg/l) and Kn (0.2  mg/l).  Seventy per cent of the rooted plants survived and they were successfully acclimated in soil. Key words: Ionidium suffruticosum, micropropagation, Medicinal herb D.O.I. 10.3329/ptcb.v19i2.5431 Plant Tissue Cult. & Biotech. 19(2): 143-150, 2009 (December)


OENO One ◽  
2015 ◽  
Vol 49 (1) ◽  
pp. 37 ◽  
Author(s):  
Nadra Khan ◽  
Maqsood Ahmed ◽  
Ishfaq Hafiz ◽  
Nadeem Abbasi ◽  
Shaghef Ejaz ◽  
...  

<p style="text-align: justify;"><strong>Aim</strong>: To optimize the concentrations of growth regulators in the media for the proficient micropropagation of grapevine (<em>Vitis vinifera </em>L.) cv. King’s Ruby.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Apical meristems of the grape cultivar were used to establish <em>in vitro</em> shoot cultures. Nodal explants, each containing an axillary bud, taken from <em>in vitro</em> grown shoots were inoculated in shoot proliferation medium, i.e., half strength Murashige and Skoog (MS) medium supplemented with benzyl aminopurine (BAP), kinetin, glycine and gibberellic acid (GA<sub>3</sub>). A higher number of shoots (5.33) with greater shoot length (2.75 cm) was produced in the medium supplemented with 1.0 mg L<sup>-1</sup> BAP and 0.1 mg L<sup>-1</sup> GA<sub>3</sub>. Calluses were induced from leaf explants taken from <em>in vitro</em> grown shoots. Callus induction was greater (73.00%) on the medium containing 2.0 mg L<sup>-1</sup> 2,4-dichlorophenoxyacetic acid (2,4-D), 0.3 mg L<sup>-1</sup> BAP and 0.2 mg L<sup>-1</sup> α-naphthaleneacetic acid (NAA). The maximum frequency of shoot regeneration (53.33%) was achieved on the medium supplemented with 1.5 mg L<sup>-1</sup> BAP and 0.5 mg L<sup>-1</sup> NAA, and the regenerated shoots successfully formed roots on growth regulator-free half strength MS medium.</p><p style="text-align: justify;"><strong>Conclusion</strong>: Optimizing the concentration of BAP and GA<sub>3</sub> and omitting the glycine and kinetin in the culture medium increased the number and length of shoots. Similarly, for inducing the callus of the leaf explants, taken from <em>in vitro</em> grown shoots, it is recommended to adjust the medium with the higher concentration of 2,4-D and lower concentrations of BAP. Moreover, the maximum number of shoots was regenerated on a medium supplemented with relatively high levels of both BAP and NAA (1.5 and 0.5 mg L<sup>-1</sup>, respectively). Finally, we suggest the half strength MS medium that is free from growth regulators for the root formation of the regenerated shoots.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Optimizing the concentration of growth regulators is crucial for the efficient micropropagation of a grape cultivar. Knowing the specific balance between the growth regulators is necessary to establish <em>in vitro</em> shoot cultures, callus induction and shoot regeneration and, hence, to propagate disease-free true to type grape cultivars in a short time.</p>


2018 ◽  
Vol 70 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Mariana Stanisic ◽  
Slavica Ninkovic ◽  
Jelena Savic ◽  
Tatjana Cosic ◽  
Nevena Mitic

Since the genetic transformation of the apple is strongly genotype-dependent and generally inefficient, the evaluation of factors affecting shoot regeneration are crucial for the establishment of a successful transformation process. In this report, we evaluated the effects of the ?-lactam antibiotics meropenem and timentin on in vitro regeneration via de novo shoot organogenesis from leaf explants of apple cv. Golden Delicious, as well as on the growth of the Agrobacterium tumefaciens strain EHA 105, and compared them with the commonly used ?-lactam cefotaxime. Also, we report for the first time the effect of hygromycin B as a selective agent in the domesticated apple, as regards shoot regeneration and shoot multiplication efficiency. We observed that cefotaxime and timentin at concentrations higher than 100 mg L-1 were sufficient to prevent Agrobacterium growth during a two-week period, while meropenem exhibited an inhibitory effect on bacterial growth at all tested concentrations (25-150 mg L-1). Cefotaxime at a concentration of 300 mg L-1 increased the number of regenerated shoots per explant (9.39) in comparison with the control (7.67). In contrast to cefotaxime, meropenem and timentin caused a decrease in shoot regeneration efficiency, but larger and more developed shoots were obtained on meropenem (25-125 mg L-1) after the same period of cultivation. Hygromycin B at a concentration of 5 mg L-1 or higher completely inhibited shoot regeneration and induced explant tissue necrosis. Therefore, the selection procedure with a final concentration of 4 mg L-1 throughout organogenesis and 10 mg L-1 for further shoot growth and multiplication is recommended for an efficient transformation process in apple cv. Golden Delicious.


2016 ◽  
Vol 68 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Mehmet Karataş ◽  
Muhammad Aasim ◽  
Muraz Dazkirli

Water hyssop (Bacopa monnieri (L.) Pennell) is a medicinal plants. Its upper and lower halves of leaf explants were incubated in Murashige and Skoog (MS) medium supplemented with 0.25, 0.50 and 1.0 mg/L benzylaminopurine (BA) for 8 weeks; the explants were exposed to white (W) and red and blue (R and B, respectively) light-emitting diodes (LEDs), at 4:1, 3:1, 2:1 and 1:1 R and B light ratios, respectively. Shoot regeneration (100%) was achieved from all explants at all applied concentrations of BA and LED types. All explants showed different BA concentration requirements for regeneration of the maximum number of shoots. Longer shoots were obtained on medium with 0.25 mg/L BA. The W LED lighting system was found to be more effective for regenerating the maximum number of shoots (26.11) per explant (on the upper half of the leaf). Conversely, longer and shorter shoots were generated under 1:1 R:B and W LEDs, respectively. The number of shoots per explant ranged from 9.67-24.0 (full leaf), 6.33-25.92 (lower half of the leaf) and 7.33-27.33 (upper half of the leaf), respectively, in response to BA and LED light. Shoot length ranged from 0.94-1.90 cm (full lamina), 0.70-2.11 cm (lower half of the leaf) and 0.93-1.83 cm (upper half of the lamina) in response to BA and LED lifght. Regenerated shoots were successfully rooted using indole-3-butyric acid (IBA) and acclimatized in the aquarium provided with tap water.


2009 ◽  
Vol 36 (No. 4) ◽  
pp. 140-146 ◽  
Author(s):  
J.K. Kanwar ◽  
S. Kumar

The influence of growth regulators, explants and their interactions on in vitro shoot bud formation from callus was studied in <I>Dianthus caryophyllus</I> L. The leaf and internode explants were cultured on Murashige and Skoog (MS) medium containing different concentrations of growth regulators. The highest callus induction was observed with 2 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D) and 1 mg/l benzyl adenine (BA). Out of twenty seven shoot regeneration media tested, only 2 mg/l thidiazuron (TDZ) and zeatin alone or in combination with naphthalene acetic acid (NAA) and/or indole acetic acid (IAA) could differentiate calli. The highest average number of shoots was observed with 2 mg/l TDZ and 1 mg/l IAA. Significant differences were observed in calli producing shoots and number of shoots per callus in the explants of leaf and internode. The shoots were elongated and multiplied on MS medium supplemented with 1 mg/l BA and solidified with 1% agar. The shoots were rooted and hardened with 76% survival success in pots after six weeks of transfer to the pots.


2010 ◽  
Vol 40 (10) ◽  
pp. 2210-2213
Author(s):  
Monalize Salete Mota ◽  
Juliana de Magalhães Bandeira ◽  
Eugenia Jacira Bolacel Braga ◽  
Valmor João Bianchi ◽  
José Antonio Peters

A shoot regeneration system for Plectranthus neochilus was studied from leaf explants. Leaves developed under in vitro conditions were cultured on Wood Plant Medium supplemented with 0.2mg dm-3 α-naphthaleneacetic acid (NAA) and different 6-benzilaminopurine (BAP) or thidiazuron (TDZ) concentrations (0, 1.5, 3.0, 4.5 and 6.0mg dm-3). An increase in percentage of responsive explants (85.3%) and in the number of shoots developed per explant (3.2) was observed when the explants were treated with 5.3 and 4.7mg dm-3 BAP, respectively. The leaf explants cultured on media supplemented with TDZ became vitreous and did not form buds. The regeneration system used is efficient for boldo bud induction and shoot development, showing high potential for advanced cellular and molecular studies.


2021 ◽  
Vol 883 (1) ◽  
pp. 012075
Author(s):  
R Purnamaningsih ◽  
D Sukmadjaja ◽  
S Suhesti ◽  
S Rahayu

Abstract Six mutant clones of sugarcane with high productivity have been produced through tissue culture techniques combined with mutations using gamma-ray irradiation and Ethyl Methane Sulfonate. The six mutant clones have been tested for stability in the field. They are proven to have high productivity and yields, so that they are very potential to be developed as superior varieties. To support the planting material sufficiency of these clones, an efficient propagation method was needed. Media formulations with different physical properties and composition of growth regulators were tested to obtain high seedling propagation rates. The media formulation for callus induction was Murashige dan Skoog (MS) + 3 mg/l 2,4-D + 3 g/l casein hydrolysate + 3% sucrose and for shoot regeneration was MS + 0,5 mg/l BA + 0,1 mg/l IBA + 100 mg/l PVP and 2% sucrose. Shoot proliferation was carried out on MS liquid (1, ½) + (0.3; 0.5 mg/l) BA + 0.1 mg/l IBA + 1 mg/l Kinetin + (0; 0.5 mg/l) GA3+ sucrose 2%. The results showed that callus induction, callus regeneration, and shoot proliferation of sugarcane mutant clones were influenced by the genotype and medium composition. The fastest callus induction was obtained from the MSP-4 clone (5.82 days), and the longest was MSB-7 (8.82 days). The largest callus diameter was obtained from MSB-6 clone on MS medium containing 1 mg/l BA, 100 mg/l PVP, and 2% sucrose. The highest number of shoots was obtained from the MSB-6 clone, while the least number of shoots conducted from the MSB-8 clone. The MSB-8 clones were more difficult to regenerate compared to the others. The best media formulation for shoot proliferation was ½ MS containing 0.5 mg/l BA, 1 mg/l Kinetin, and 0.1 mg/l IBA, while the best formulation for rooting was ½ MS.


2017 ◽  
Vol 14 (2) ◽  
pp. 24-31 ◽  
Author(s):  
S S Riva ◽  
A Islam ◽  
M E Hoque

An experiment was conducted on in vitro regeneration and multiplication of Dendrobium bensoniae. Different concentrations of BA and IBA alone or combination of both hormones were used as treatment for regeneration.  It was revealed that shoot regeneration from node was the best at 2.0 mg/l BA supplemented to MS medium. It gave better responses than all other concentrations and combinations of BA and BA+IBA, used in the present study. The highest number of shoots and leaves were found when 1.0 mg/l BA with 1.5 mg/l IBA was supplemented into MS medium.  For rooting, 0.5 mg/l BA with 1.0 mg/l IBA was found to be the most effective. The well-rooted plantlets were successfully acclimatized under 70-80% humidity and planted in pots and transferred to the shade house for establishment. Around 85% of plantlets survived in the field. From the present result, it may be recommended that MS medium supplemented with 2.0 mg/l BA may be used for rapid shoot induction and regeneration of D. bensoniae.The Agriculturists 2016; 14(2) 24-31


2020 ◽  
Vol 30 (1) ◽  
pp. 131-141
Author(s):  
Hundessa Fufa ◽  
Jiregna Daksa

The present study was undertaken to establish a protocol for in vitro callusing of three Jatropha accessions, namely Metema, Adami Tulu and Shewa Robit from leaf explants. The medium supplemented with combination of 4.44 μM BAP and 4.52 μM 2,4-D resulted in maximum percentage of callus (100%) formed for all accessions. The maximum shoot regeneration (66.67%) from callus with 10.13 number of shoot was obtained from Shewa Robit in MS medum fortified with TDZ (2.27 μM ) and IBA (0.49 μM ). The presence of TDZ in the shoot regeneration medium has greater influence on the induction of adventitious shoot buds, whereas MS supplemented with BAP alone and combination with IBA did not induce shoot regeneration from callus culture. The results obtained in the present study would facilitate the high callus induction and regeneration responses in Jatropha for its improvement using biotechnological tools. Plant Tissue Cult. & Biotech. 30(1): 131-141, 2020 (June)


Sign in / Sign up

Export Citation Format

Share Document