hygromycin b
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 17)

H-INDEX

42
(FIVE YEARS 1)

Author(s):  
Hitoshi Kamauchi ◽  
Mitsuaki Suzuki ◽  
Koichi Takao ◽  
Yoshiaki Sugita
Keyword(s):  

2021 ◽  
Author(s):  
Timothy Lee Turner ◽  
Sumitra Debina Mitra ◽  
Travis Joseph Kochan ◽  
Nathan B Pincus ◽  
Marine L Corbin ◽  
...  

A purchased lot of the antibiotic hygromycin B was found to be contaminated with a novel bacterial species, which we designate Pseudomonas hygromyciniae. The P. hygromyciniae strain harbors a novel 250 kb megaplasmid which confers resistance to hygromycin B and contains numerous other genes predicted to encode replication and conjugation machinery. These findings indicate that commercially manufactured antibiotics represent another extreme environment that may support the growth of novel bacterial species.


2021 ◽  
Author(s):  
Riccardo Belardinelli ◽  
Heena Sharma ◽  
Frank Peske ◽  
Marina V. Rodnina

AbstractMany antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA translocation), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, EF-G-induced transition to the rotated/swiveled state of the SSU is hardly affected. The major effect of the antibiotics is observed at the stage when the SSU body and the head domain move backward. Vio, Spc and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


2021 ◽  
Vol 8 (3) ◽  
pp. 42
Author(s):  
Jun Yang Ong ◽  
Reem Swidah ◽  
Marco Monti ◽  
Daniel Schindler ◽  
Junbiao Dai ◽  
...  

Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism Saccharomyces cerevisiae (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration of symmetrical loxP sites (loxPSym) downstream of almost every non-essential gene, is arguably the most applicable synthetic genome-wide alteration to date. The SCRaMbLE system offers the capability to perform rapid genome diversification, providing huge potential for targeted strain improvement. Here we describe how SCRaMbLE can evolve a semi-synthetic yeast strain housing the synthetic chromosome II (synII) to generate hygromycin B resistant genotypes. Exploiting long-read nanopore sequencing, we show that all structural variations are due to recombination between loxP sites, with no off-target effects. We also highlight a phenomenon imposed on SCRaMbLE termed “essential raft”, where a fragment flanked by a pair of loxPSym sites can move within the genome but cannot be removed due to essentiality restrictions. Despite this, SCRaMbLE was able to explore the genomic space and produce alternative structural compositions that resulted in an increased hygromycin B resistance in the synII strain. We show that among the rearrangements generated via SCRaMbLE, deletions of YBR219C and YBR220C contribute to hygromycin B resistance phenotypes. However, the hygromycin B resistance provided by SCRaMbLEd genomes showed significant improvement when compared to corresponding single deletions, demonstrating the importance of the complex structural variations generated by SCRaMbLE to improve hygromycin B resistance. We anticipate that SCRaMbLE and its successors will be an invaluable tool to predict and evaluate the emergence of antibiotic resistance in yeast.


Author(s):  
Xinyue Chen ◽  
Shun Iwatani ◽  
Toshitaka Kitamoto ◽  
Hiroji Chibana ◽  
Susumu Kajiwara

Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.


Author(s):  
R. M. Taipova ◽  
B. R. Kuluev

The present study describes the results of our research in Agrobacterium-mediated transformation of epicotyl segments of Amaranthus cruentus variety “Bagryanyi” by the ARGOS-LIKE transgene of Arabidopsis thaliana controlled by the 35S promoter. For shoot regeneration from epicotyl segments after Agrobacterium-mediated transformation, Murashige-Skoog (MS) medium containing 13 μM 6-benzylaminopurine and 1 μM α-naphthylacetic acid was used. For the selection of transgenic shoots, 10 mg/L of hygromycin B was added to the MS medium.


2020 ◽  
Author(s):  
Tim A. Dahlmann ◽  
Dominik Terfehr ◽  
Kordula Becker ◽  
Ines Teichert

AbstractThe cloning of plasmids can be time-consuming or expensive. Yet, cloning is a prerequisite for many standard experiments for the functional analysis of genes, including the generation of deletion mutants and the localization of gene products. Here, we provide Golden Gate vectors for fast and easy cloning of gene fusion as well as gene deletion vectors applicable to diverse fungi. In Golden Gate cloning, restriction and ligation occur simultaneously in a one-pot reaction. Our vector set contains recognition sites for the commonly used type IIS restriction endonuclease BsaI. We generated plasmids for C- as well as N-terminal tagging with GFP, mRFP and 3xFLAG. For gene deletion, we provide five different donor vectors for selection marker cassettes. These include standard cassettes for hygromycin B, nourseothricin and phleomycin resistance genes as well as FLP/FRT-based marker recycling cassettes for hygromycin B and nourseothricin resistance genes. To make cloning most feasible, we provide robust protocols, namely (1) an overview of cloning procedures described in this paper, (2) specific Golden Gate reaction protocols and (3) standard primers for cloning and sequencing of plasmids and generation of deletion cassettes by PCR and split-marker PCR. We show that our vector set is applicable for the biotechnologically relevant Penicillium chrysogenum and the developmental model system Sordaria macrospora. We thus expect these vectors to be beneficial for other fungi as well. Finally, the vectors can easily be adapted to organisms beyond the kingdom fungi.


2020 ◽  
Vol 8 (11) ◽  
pp. 1738
Author(s):  
Abu Bakar Salleh ◽  
Siti Marha Baharuddin ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Thean Chor Leow ◽  
Mahiran Basri ◽  
...  

Screening for a new yeast as an alternative host is expected to solve the limitations in the present yeast expression system. A yeast sample which was isolated from the traditional food starter ‘ragi’ from Malaysia was identified to contain Meyerozyma guilliermondii strain SMB. This yeast-like fungus strain SMB was characterized to assess its suitability as an expression host. Lipase activity was absent in this host (when assayed at 30 °C and 70 °C) and Hygromycin B (50 μg/mL) was found to be its best selection marker. Then, the hyg gene (Hygromycin B) was used to replace the sh ble gene (Zeocin) expression cassette in a Komagataella phaffii expression vector (designated as pFLDhα). A gene encoding the mature thermostable lipase from Bacillus sp. L2 was cloned into pFLDhα, followed by transformation into strain SMB. The optimal expression of L2 lipase was achieved using YPTM (Yeast Extract-Peptone-Tryptic-Methanol) medium after 48 h with 0.5% (v/v) methanol induction, which was 3 times faster than another K. phaffii expression system. In conclusion, a new host-vector system was established as a platform to express L2 lipase under the regulation of PFLD1. It could also be promising to express other recombinant proteins without inducers.


Fine Focus ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 76-83
Author(s):  
Avery M. Runnebohm ◽  
Melissa D. Evans ◽  
Adam E. Richardson ◽  
Samantha M. Turk ◽  
James B. Olesen ◽  
...  

Ubr1 is a conserved ubiquitin ligase involved in the degradation of aberrant proteins in eukaryotic cells. The human enzyme is found mutated in patients with Johanson-Blizzard syndrome. We hypothesized that Ubr1 is necessary for optimal cellular fitness in conditions associated with elevated abundance of aberrant and misfolded proteins. Indeed, we found that loss of Ubr1 in the model eukaryotic microorganism Saccharomyces cerevisiae strongly sensitizes cells to hygromycin B, which reduces translational fidelity by causing ribosome A site distortion. Our results are consistent with a prominent role for Ubr1 in protein quality control. We speculate that disease manifestations in patients with Johanson-Blizzard syndrome are linked, at least in part, to defects in protein quality control caused by loss of Ubr1 function.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Raphael Gabriel ◽  
Julia Prinz ◽  
Marina Jecmenica ◽  
Carlos Romero-Vazquez ◽  
Pallas Chou ◽  
...  

Abstract Background Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production. Results Here, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week. Conclusion The genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.


Sign in / Sign up

Export Citation Format

Share Document