scholarly journals Drought Stress Increases Densities but Not Populations of Two-spotted Spider Mite on Buddleia davidii `Pink Delight'

HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 280-282 ◽  
Author(s):  
Jeffrey H. Gillman ◽  
Mark W. Rieger ◽  
Michael A. Dirr ◽  
S. Kristine Braman

Two experiments were conducted to determine the effect of drought stress on the susceptibility of Buddleia davidii Franch. `Pink Delight' to the two-spotted spider mite (Tetranychus urticae Koch). In the first experiment, drought stress was imposed by withholding water until predawn xylem pressure potential fell below -1 MPa. Shoot growth was 75% less in drought-stressed than in nonstressed plants. Mite population densities were not affected, but noninfested leaf area was 14% higher, and degree of mite damage was lower, in nonstressed plants. Evidently, the greater amount of new growth in nonstressed plants leads to lower spider mite densities by diluting populations. In a second experiment, nonstressed B. davidii `Pink Delight' plants were watered every 1 to 2 days and drought-stressed plants were watered every 3 days. Spider mite populations were monitored by sampling newly expanded and mature foliage. Mite populations on mature foliage were not affected by stress, but stressed plants grew less and had larger spider mite populations on their newly expanded foliage than did nonstressed plants.

2004 ◽  
Vol 82 (6) ◽  
pp. 850-861 ◽  
Author(s):  
Zhenmin Tang ◽  
Mary A. Sword Sayer ◽  
Jim L Chambers ◽  
James P Barnett

Few studies have examined the combined effects of nutrition and water exclusion on the canopy physiology of mature loblolly pine (Pinus taeda L.). Understanding the impacts of forest management on plantation productivity requires extensive research on the relationship between silvicultural treatments and environmental constraints to growth. We studied the physiological responses of 18-year-old loblolly pine trees exposed to a combination of fertilization (fertilizer or no fertilizer) and throughfall (normal throughfall or throughfall exclusion). Gas exchange variables were measured in the upper and lower crown between 0900 and 1700 h from May to November in 1999. Needle fall was collected to estimate foliage mass and leaf area. Summer drought and throughfall exclusion significantly decreased predawn xylem pressure potential. Needle-level photosynthesis, transpiration, and stomatal conductance declined during the drought and were significantly lower in the throughfall exclusion treatment. Throughfall exclusion also reduced annual foliage mass and daily whole-crown photosynthesis and transpiration. In the normal throughfall treatment, fertilization had no effect on needle-level physiology, but increased annual foliage mass and whole-crown photosynthesis by 26% and 41%, respectively. With the exclusion of throughfall, however, annual foliage mass and daily whole-crown photosynthesis exhibited little response to fertilization. We conclude that greater nutrient availability enhances the carbon uptake of mature loblolly pine trees by stimulating foliage production, but the positive effects of fertilization on leaf area and carbon fixation are limited by low water availability.Key words: foliage mass, photosynthesis, Pinus taeda, seasonal trend, transpiration, xylem pressure potential.


1982 ◽  
Vol 12 (4) ◽  
pp. 1006-1009 ◽  
Author(s):  
E. C. Tear ◽  
K. O. Higginbotham ◽  
J. M. Mayo

Drought stress is often suggested as a factor preventing successful field establishment of seedlings of white spruce (Piceaglauca (Moench) Voss) during their first growing season. In this study the combined effects of water stress and seedbed type on 1- and 3-month-old seedlings were examined. Shoot xylem pressure potential decreased to −1.5 MPa in seedlings grown in a greenhouse soil mixture in 9.5 days but took 18.5 days to reach this level in peat. Mortality reached 100% for 1-month-old seedlings grown in greenhouse mix 11 days after watering ceased, while it took 23 days to reach this level in peat. Shoot xylem pressure potentials can be used to predict mortality potential on the two seedbed types. Three-month-old seedlings on either seedbed survived for at least 31 days without watering, indicating development of capability for control of water loss with time.


Weed Science ◽  
1983 ◽  
Vol 31 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Susan E. Weaver ◽  
Chin S. Tan

The critical period of weed interference in transplanted tomatoes (Lycopersicon esculentumMill. 'Springset’) was from 28 to 35 days after transplanting. A single weeding during this period was sufficient to prevent yield reductions. A growth analysis revealed that significant differences in plant dry weight and fruit number between tomatoes from weed-free and weed-infested plots were not apparent until 56 to 70 days after transplanting. The shorter the initial weed-free period, or the longer weeds were allowed to remain in the plots before removal, the earlier reductions in tomato dry weight and fruit number appeared. Weed interference was due primarily to shading rather than water stress. Tomatoes from weed-infested plots had significantly lower stomatal conductances than those from weed-free plots, but did not differ in xylem-pressure potential or in canopy temperature. If tomatoes were kept weed-free for more than 28 days, or when weeds were present for less than 28 days after transplanting, stomatal conductances were not significantly reduced.


1984 ◽  
Vol 32 (4) ◽  
pp. 367 ◽  
Author(s):  
IJ Colquhoun ◽  
RW Ridge ◽  
DT Bell ◽  
WA Loneragan ◽  
J Kuo

Land use which reduces tree canopy density and the impact of Phytophthora cinnamomi are believed to be altering the hydrological balance of parts of the northern jarrah forest, Western Australia. In the drier eastern zones of the forest, replacement plant communities must maintain the soil-salt-water balance to prevent significant increases in salinization of streams in water supply catchments. Daily and seasonal patterns of the diffusive resistance of leaves and xylem pressure potential were determined for the major natural dominant of the region, Eucalyptus marginata, and five other species of Eucalyptus used in rehabilitation. Three types of daily and seasonal patterns were observed. E. marginata and E. calophylla exhibited little stomatal control of water loss, and leaf resistances remained low throughout the study period (type 1). E. maculata, E. resinifera and E. saligna exhibited marked stomatal regulation during summer days when xylem pressure potentials fell below -2.O MPa (type 2). E. wandoo (type 3) also controlled water loss but developed xylem pressure potentials far lower than all other species tested (<-3.0 MPa). Although none of the species tested replicated the summer stomatal resistance and xylem pressure potential patterns of E. marginata, it is suggested that total annual water use should be examined before selecting the most appropriate species to rehabilitate disturbed sites in the eastern zones of the northern jarrah forest region.


1979 ◽  
Vol 9 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Merrill R. Kaufmann

The effects of soil drying on water relations of Engelmann spruce (Piceaengelmannii Engelm.) were studied by withholding water from 4-year-old potted seedlings in full sunlight and under a shade screen transmitting 55–60% light. During a period of 2 months, xylem pressure potential, water vapor conductance, and transpirational flux density gradually declined compared with well watered controls, with drying being more rapid in full sunlight. As drying progressed, xylem pressure potential at 0 transpiration (predawn potential) decreased and the slope of the relationship between xylem pressure potential and transpirational flux density became more negative. Hysteresis in the relationship occurred when predawn xylem pressure potential was −6 bars (1 bar = 105 Pa) or lower. Needle conductance during daylight hours decreased as the absolute humidity difference from leaf to air increased but conductances were lower in September than in August for given humidity differences. Xylem pressure potentials between −15 and −19 bars had no clear effect on conductance in August but apparently caused significant stomatal closure in September. Because of humidity-induced stomatal closure, evaporative demand had little effect on transpirational flux density over a broad range of humidity gradient. Thus increased leaf-to-air vapor gradients for transpiration are not always accompanied by increased transpiration.


1990 ◽  
Vol 20 (9) ◽  
pp. 1508-1513 ◽  
Author(s):  
Bert M. Cregg ◽  
Thomas C. Hennessey ◽  
Philip M. Dougherty

Xylem pressure potential, leaf conductance, transpiration, and soil moisture were measured during three summers following precommercial thinning of a 10-year-old stand of loblolly pine (Pinustaeda L.) in southeastern Oklahoma. The stand was thinned to three target basal-area levels: 5.8, 11.5, and 23 m2•ha−1 (control). Soil water potential increased significantly in response to thinning during the summer of each year studied. However, plant water relations were relatively unaffected by the treatments. Significant thinning effects on diurnal xylem pressure potential were observed on only 7 of 55 measurement periods. Treatment differences in conductance and transpiration observed during the first year of the study appeared to be related to differences in light interception and crown exposure. Regression analysis indicated response of leaf conductance and transpiration to predawn xylem pressure potential and vapor pressure deficit was not affected by the thinning treatments. Overall, the results of this study are consistent with a hypothesis in which transpiration, leaf area, and water potential interact to form a homeostatic relationship.


HortScience ◽  
2012 ◽  
Vol 47 (9) ◽  
pp. 1328-1332 ◽  
Author(s):  
Mason T. MacDonald ◽  
Rajasekaran R. Lada ◽  
Martine Dorais ◽  
Steeve Pepin

Ethylene accumulation increases after harvest and culminates in needle abscission in balsam fir [Abies balsamea (L.) Mill.]. We hypothesize that water deficit induces ethylene evolution, thus triggering abscission. The purpose of this research was to investigate the role of temperature and humidity on postharvest needle abscission in the presence and absence of exogenous ethylene and link vapor pressure deficit (VPD) to postharvest needle abscission in balsam fir. In the first experiment, branches were exposed to 30%, 60%, or 90% humidity while maintained at 19.7 °C (VPD of 1.59, 0.91, or 0.23 kPa, respectively); in the second experiment, branches were exposed to 5, 15, or 25 °C (VPD of 0.35, 0.68, or 1.26 kPa, respectively) while maintained at 60% relative humidity. Needle retention duration, average water use, xylem pressure potential relative water content, and ethylene evolution were response variables. Reducing water loss or xylem tension by changing temperature or humidity effectively delayed needle abscission, although the 90% humidity treatment had the most profound effects. In the absence of exogenous ethylene, branches placed in 90% humidity had a fivefold increase in needle retention, 67% decrease in average water use, and had a final xylem pressure potential of –0.09 MPa. There was a near perfect relationship between VPD and needle retention (R2 = 0.99). These findings suggest that increasing xylem tension or decreasing water status may trigger ethylene synthesis and needle abscission. In addition, these findings demonstrate an effective means of controlling postharvest needle abscission by modifying temperature and/or relative humidity.


Sign in / Sign up

Export Citation Format

Share Document