scholarly journals 075 Confirmation of Molecular Markers and Flower Color Associated with QTL for Resistance to Common Bacterial Blight in Common Beans

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 454B-454
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
James R. Steadman ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean (Phaseolus vulgaris). RAPD markers and flower color (V gene) previously had been reported to be associated with six QTL affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. Our objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a RI backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in a F2 population from a different cross Pinto `Chase' × XAN-159 could be confirmed. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five XCP strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. The confirmed marker BC437.1050 and V gene on linkage group 5, along with other resistance genes from other germplasm, could be used to pyramid the different genes into a bean cultivar to enhance the resistance to Xcp.

1999 ◽  
Vol 124 (5) ◽  
pp. 519-526 ◽  
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
Geunhwa Jung ◽  
James R. Steadman

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp) is a serious disease of common bean (Phaseolus vulgaris L.). Randomly amplified polymorphic DNA (RAPD) markers and flower color (V gene) previously were reported to be associated with six quantitative trait loci (QTL) affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. The objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a recombinant inbred (RI) backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in an F2 population from a different cross pinto `Chase' × XAN-159 could be confirmed. One or two genes from XAN-159 controlled leaf and pod resistance to Xcp. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five Xcp strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. One to three QTL affecting leaf and pod resistance to Xcp accounted for 22% to 61% of the phenotypic variation. Gene number (one to two) estimations and number of QTL (one to three) detected for leaf and pod resistance to Xcp in the RI backcross population were generally in agreement. The marker BC437.1050 and V gene, along with other resistance genes from other germplasm, could be utilized to pyramid the different genes into a susceptible or partially resistant bean line or cultivar to enhance the level of resistance to Xcp.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 452A-452
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), is an important disease of common bean (Phaseolus vulgaris L.). Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. The objective was to identify RAPD markers linked to major dominant genes for CBB resistance and purple flower color using bulked segregant analysis in an F2 population from a tepary bean cross Nebr#19 [resistant (R) to CBB and white flower color] × Nebr#4B [susceptible (S) to CBB and purple flower color]. Ten RAPD primers (600 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S plants. All markers showed coupling linkage with CBB resistance. The RAPD marker of G-14 primer was 5.2 cM distant from the gene for resistance to Xcp strain LB-2. The RAPD marker of L-18 primer was 6.8 cM distant from the gene for resistance to Xcp strain SC-4A. The RAPD marker of G-14 primer was 26.2 cM distant from the gene for resistance to Xcp strain EK-11. Seven RAPD primers showed polymorphisms between bulked DNA derived from purple and white flower plants. All markers showed coupling linkage with the gene for purple flower color. The RAPD marker of Y-6 primer was 3.6 cM distant from the gene for purple flower color.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 623f-623
Author(s):  
Geunhwa Jung ◽  
Paul W. Skroch ◽  
Dermot P. Coyne ◽  
James Nienhuis ◽  
E. Arnaud-Santana

Common bacterial blight (CBB) incited by the bacterial pathogen Xanthomonas campestris pv. phaseoli (Smith) Dye is an important disease of common bean. In a previous study, QTL associated with CBB resistance were described based on RAPD marker analysis of a recombinant inbred population derived from the common bean cross BAC-6 (R) × HT-7719 (S) (resistant × susceptible). The objective of this research is to confirm these previously described candidate marker locus-QTL associations using an inbred backcross PC-50 (S) × BAC-6 (R) and a recombinant inbred Venezuela 44 (S) × BAC-6 (R) population. Two markers previously found to be associated with QTL for CBB resistance in the BAC-6 × HT-7719 population were found to account for 30% of the phenotypic variation for CBB resistance in the PC-50 × BAC-6 inbred backcross population. The three most resistant BC2F3 lines based on marker locus genotypes were ranked 1, 3, and 7 (out of 64) based on phenotypic evaluation. These results provide important confirmation of marker locus-QTL associations and indicate that RAPD markers linked to loci controlling the expression of CBB resistance in common bean may be used to transfer resistance genes into susceptible breeding material.


Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 544-551 ◽  
Author(s):  
Yonghe Bai ◽  
T. E. Michaels ◽  
K. P. Pauls

Seven hundred and fifty-six random primers were screened with bulks of genomic DNA from common bacterial blight (CBB) resistant and susceptible bean plants. The plants were from a breeding population derived from an interspecific cross between Phaseolus acutifolius and Phaseolus vulgaris. Four RAPD markers, named R7313, RE416, RE49, and R4865, were found to be significantly associated with CBB resistance in this population. Forty-nine molecular markers segregating in the population were clustered into 8 linkage groups by a MAPMAKER linkage analysis. The largest linkage group was 140 cM long and contained 25 marker loci, including marker R4865. Markers R7313, RE416, and RE49 were clustered on another linkage group. A regression analysis indicated that the markers in these two groups together accounted for 81% of the variation in CBB resistance in the population. The addition of another marker, M56810, which was not individually associated with CBB resistance, increased the total contribution to the trait to 87%.Key words: Phaseolus vulgaris L., common bacterial blight (CBB), polymerase chain reaction (PCR), RAPD markers, linkage groups.


1997 ◽  
Vol 122 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Geunhwa Jung ◽  
Paul W. Skroch ◽  
Dermot P. Coyne ◽  
James Nienhuis ◽  
E. Arnaud-Santana ◽  
...  

Randomly amplified polymorphic DNA (RAPD) molecular markers were used to construct a partial genetic linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross PC-50 × XAN-159 for studying the genetics of bacterial disease resistance in common bean. The linkage map spanned 426 cM and included 168 RAPD markers and 2 classical markers with 11 unassigned markers. The seventy recombinant inbred lines were evaluated for resistance to two strains of common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] (Xcp). Common bacterial blight (CBB) resistance was evaluated for Xcp strain EK-11 in later-developed trifoliolate leaves and for Xcp strains, DR-7 and EK-11, in first trifoliolate leaves, seeds, and pods. One to four quantitative trait loci (QTLs) accounted for 18% to 53% of the phenotypic variation for traits. Most significant effects for CBB resistance were associated with one chromosomal region on linkage group 5 and with two regions on linkage group 1, of the partial linkage map. The chromosomal region (a 13-cM interval) in linkage group 5 was significantly associated with resistance to Xcp strains DR-7 and EK-11 in leaves, pods, and seeds. The regions in linkage group 1 were also significantly associated with resistance to both Xcp strains in more than one plant organ. In addition, a seedcoat pattern gene (C) and a flower color gene (vlae) were mapped in linkage groups 1 and 5, respectively, of the partial linkage map. The V locus was found to be linked to a QTL with a major effect on CBB resistance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 499e-499
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean(Phaseolus vulgaris L.). Gene estimation, associations of traits, and confirmation of QTL for resistance to Xcp were investigated in a recombinant inbred population derived from the backcross BC2F6 PC-50 (susceptible to Xcp) × XAN-159 (resistant to Xcp). One or two genes from XAN-159 controlled leaf resistance to Xcp. One major gene from XAN-159 was involved in controlling pod resistance to Xcp. Low (+0.24) to intermediate (+0.57 and +0.75) Pearson correlations were observed between leaf and pod reactions to Xcp. Purple flower color was associated with leaf and pod resistance to Xcp but not days to flower. One to 2 QTLs explained from 20 to 51% of the total phenotypic variation for leaf reactions to 5 Xcp strains. Two QTLs explained from 20 to 22% of the total phenotypic variation for pod reactions to Xcp strains EK-11 and DR-7. A marker BC437.1050 was associated with leaf and pod resistance to 5 Xcp strains in nearly all experiments, and accounted for 13% to 45% of the phenotypic variation for these traits. A unassigned marker D13.1000 was associated with only pod resistance to Xcp strains EK-11 and DR-7. Gene number (1 or 2) estimations and number of QTL (1 or 2) detected for resistance to Xcp generally agree. The confirmed marker BC437.1050 is expected to be useful in breeding programs for resistance to Xcp.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 451E-451
Author(s):  
Phillip N. Miklas ◽  
Valerie Stone ◽  
Carlos A. Urrea ◽  
James S. Beaver

A genetic linkage map of 170 RAPD markers mapped across 79 recombinant inbred lines (Dorado and XAN-176) reveal genomic regions that condition multiple disease resistance to fungal (Ashy Stem Blight—Macrophomina phaseolina), viral (bean golden mosaic virus—BGMV), and bacterial (common bacterial blight—Xanthomonas campestris pv. phaseoli) pathogens of common bean (Phaseolus vulgaris). A genomic site on linkage group US-1 had a major effect, explaining 18%, 34%, and 40% of the variation in phenotypic reaction to ashy stem blight, BGMV, and common bacterial blight disease, respectively. Adjacent to this region was a QTL conditioning 23% of the variation in reaction to another fungal pathogen, web blight (Thanatephorus cucumeris). A second genomic site on linkage group US-1 had minor affect on multiple resistance expression to the same fungal (15%), viral (15%), and bacterial (10%) pathogens. It is unknown whether these specific genomic regions represent a series of linked QTL affecting resistance to each disease separately or an individual locus with pleiotropic effect against all three pathogens.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 453E-453
Author(s):  
N. Mutlu ◽  
D.P. Coyne ◽  
S.O. Park ◽  
J.R. Steadman

Common bacterial blight (CBB) in common bean (Phaseolus vulgaris L.), caused by Xanthomonas campestris pv. phaseoli (Xcp), reduces bean yields and quality throughout the world. Pinto `Chase' is a high-yielding variety with moderate resistance to Xcp derived from great northern Nebraska #1 selection 27, whose resistance is derived from an unknown tepary (P. acutifolius) bean source. XAN-159 is a black mottled small seeded breeding line with different genes for high resistance to Xcp derived from a different tepary source (PI 319443). Our objective was to pyramid different genes for Xcp resistance from the donor parent XAN-159 into the rust-resistant recurrent parent Pinto `Chase' using the classical back-cross breeding method with confirmation of resistance using RAPD molecular markers. Resistance was confirmed in some BC2F2 generation plants. Seven RAPD markers and the V locus (flower color) previously identified were confirmed in the BC1 and BC2 populations. Smaller seed size, purple flower color, and black mottled seed coat color were coinherited with resistance to Xcp. However, a recombinant plant with enhanced CBB resistance and moderate-sized pinto seed was identified. Backcross breeding is being continued.


1999 ◽  
Vol 124 (6) ◽  
pp. 654-662 ◽  
Author(s):  
H.M. Ariyarathne ◽  
D.P. Coyne ◽  
G. Jung ◽  
P.W. Skroch ◽  
A.K. Vidaver ◽  
...  

Diseases of beans (Phaseolus vulgaris L.) are primary constraints affecting bean production. Information on tagging and mapping of genes for disease resistance is expected to be useful to breeders. The objectives of this study were to develop a random amplified polymorphic DNA (RAPD) marker linkage map using 78 F9 recombinant inbred (RI) lines derived from a Middle-American common bean cross Great Northern Belneb RR-1 [resistant to common bacterial blight (CBB) and halo blight (HB)] × black A 55 [dominant I gene resistance to bean common mosaic potyvirus] and to map genes or QTL (quantitative trait loci) for resistance to CBB, HB, BCMV (bean common mosaic virus), and BCMNV (bean common mosaic necrosis virus) diseases. The RI lines were evaluated for resistance to leaf and pod reactions to Xanthomonas campestris pv. phaseoli (Xcp) (Smith Dye) strain EK-11, leaf reactions to two Pseudomonas syringae pv. phaseolicola (Psp) (Burkholder) Young et al. (1978) strains HB16 and 83-Sc2A, and BCMV strain US-5 and BCMNV strain NL-3. The linkage map spanned 755 cM, including 90 markers consisting of 87 RAPD markers, one sequence characterized amplified region (SCAR), the I gene, and a gene for hypersensitive resistance to HB 83-Sc2A. These were grouped into 11 linkage groups (LG) corresponding to the 11 linkage groups in the common bean integrated genetic map. A major gene and QTL for leaf resistance to HB were mapped for the first time. Three QTL for leaf reactions to HB16 were found on linkage groups 3, 5, and 10. Four regions on linkage groups 2, 4, 5, and 9, were significantly associated with leaf reactions to HB strain 83-Sc2A. The gene controlling the hypersensitive reaction to HB 83-Sc2A mapped to the same region as the QTL on LG 4. The I locus for resistance to BCMV and BCMNV was mapped to LG 2 at about 1.4 cM from RAPD marker A10.1750. Five and four markers were significantly associated with QTL for resistance to CBB in leaves and pods, respectively, with four of them associated with resistance in both plant organs. A marker locus was discovered on LG 10, W10.550, which could account for 44% and 41% of the phenotypic variation for CBB resistance in leaves and pods, respectively. QTL for resistance in pod to CBB, leaf resistance to HB, and the I gene were linked on LG 2.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 623d-623
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne ◽  
G. Jung

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), an important disease in common bean (Phaseolus vulgaris L.) Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. Our objective was to identify RAPD markers linked to major genes for CBB resistance using bulked segregant analysis in an F2 population from a tepary bean cross CIAT640005 (R) X Nebr#4B (S). A total of 57 RAPD primers (602 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S CBB plants. All markers showed coupling linkage with CBB resistance. A good fit to a 3:1 ratio of bands for presence and absence using 11 RAPD primers was observed in 77 F2 plants. Markers of U-15 and L-7 primers were 2.4 cM distant from the gene for resistance to Xcp strain LB-2. RAPD markers of U-10, U-20, S-12, Y-4, F-13, P-6, Q-1, and Q-ll primers were 2.4 cM distant from the gene for resistance to Xcp strain SC-4A. RAPD markers of IJ-15 and L-7 primers were 8.4 cM distant from the gene for resistance to Xcp strain EKl l. The tepary RAPD linkage group includes three molecular markers and three genes for resistance to Xcp strains EK-l l, LB-2, and SC-4A and spans a length of 19.2 cM. This data supports the presence of Xcp races.


Sign in / Sign up

Export Citation Format

Share Document