scholarly journals RAPD Markers Linked to Major Genes for Common Bacterial Blight and Purple Flower Color in a Tepary Bean Cross

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 452A-452
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), is an important disease of common bean (Phaseolus vulgaris L.). Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. The objective was to identify RAPD markers linked to major dominant genes for CBB resistance and purple flower color using bulked segregant analysis in an F2 population from a tepary bean cross Nebr#19 [resistant (R) to CBB and white flower color] × Nebr#4B [susceptible (S) to CBB and purple flower color]. Ten RAPD primers (600 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S plants. All markers showed coupling linkage with CBB resistance. The RAPD marker of G-14 primer was 5.2 cM distant from the gene for resistance to Xcp strain LB-2. The RAPD marker of L-18 primer was 6.8 cM distant from the gene for resistance to Xcp strain SC-4A. The RAPD marker of G-14 primer was 26.2 cM distant from the gene for resistance to Xcp strain EK-11. Seven RAPD primers showed polymorphisms between bulked DNA derived from purple and white flower plants. All markers showed coupling linkage with the gene for purple flower color. The RAPD marker of Y-6 primer was 3.6 cM distant from the gene for purple flower color.

1999 ◽  
Vol 124 (5) ◽  
pp. 519-526 ◽  
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
Geunhwa Jung ◽  
James R. Steadman

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp) is a serious disease of common bean (Phaseolus vulgaris L.). Randomly amplified polymorphic DNA (RAPD) markers and flower color (V gene) previously were reported to be associated with six quantitative trait loci (QTL) affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. The objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a recombinant inbred (RI) backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in an F2 population from a different cross pinto `Chase' × XAN-159 could be confirmed. One or two genes from XAN-159 controlled leaf and pod resistance to Xcp. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five Xcp strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. One to three QTL affecting leaf and pod resistance to Xcp accounted for 22% to 61% of the phenotypic variation. Gene number (one to two) estimations and number of QTL (one to three) detected for leaf and pod resistance to Xcp in the RI backcross population were generally in agreement. The marker BC437.1050 and V gene, along with other resistance genes from other germplasm, could be utilized to pyramid the different genes into a susceptible or partially resistant bean line or cultivar to enhance the level of resistance to Xcp.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 623d-623
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne ◽  
G. Jung

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), an important disease in common bean (Phaseolus vulgaris L.) Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. Our objective was to identify RAPD markers linked to major genes for CBB resistance using bulked segregant analysis in an F2 population from a tepary bean cross CIAT640005 (R) X Nebr#4B (S). A total of 57 RAPD primers (602 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S CBB plants. All markers showed coupling linkage with CBB resistance. A good fit to a 3:1 ratio of bands for presence and absence using 11 RAPD primers was observed in 77 F2 plants. Markers of U-15 and L-7 primers were 2.4 cM distant from the gene for resistance to Xcp strain LB-2. RAPD markers of U-10, U-20, S-12, Y-4, F-13, P-6, Q-1, and Q-ll primers were 2.4 cM distant from the gene for resistance to Xcp strain SC-4A. RAPD markers of IJ-15 and L-7 primers were 8.4 cM distant from the gene for resistance to Xcp strain EKl l. The tepary RAPD linkage group includes three molecular markers and three genes for resistance to Xcp strains EK-l l, LB-2, and SC-4A and spans a length of 19.2 cM. This data supports the presence of Xcp races.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 454B-454
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Nedim Mutlu ◽  
James R. Steadman ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean (Phaseolus vulgaris). RAPD markers and flower color (V gene) previously had been reported to be associated with six QTL affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. Our objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a RI backcross population from the cross BC2F6 `PC-50' × XAN-159 and for leaf resistance to Xcp in a F2 population from a different cross Pinto `Chase' × XAN-159 could be confirmed. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five XCP strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. The confirmed marker BC437.1050 and V gene on linkage group 5, along with other resistance genes from other germplasm, could be used to pyramid the different genes into a bean cultivar to enhance the resistance to Xcp.


1998 ◽  
Vol 123 (2) ◽  
pp. 278-282 ◽  
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Atilla Dursun ◽  
Geunhwa Jung

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), is an important seed-transmitted disease of common bean (Phaseolus vulgaris L.). Tepary bean (Phaseolus acutifolius A. Gray) has high resistance to Xcp. The objective of this study was to identify RAPD markers linked to genes controlling resistance to three isolates of Xcp using bulked segregant analysis in an F2 population from the tepary bean cross CIAT-G40005 (resistant to Xcp) × Nebr.#4B (susceptible to Xcp). Twelve RAPD markers were mapped in a coupling-phase linkage with three genes for resistance to Xcp. The linkage group spanned a distance of 19.2 cM. A marker L7750 was linked to the genes for resistance to Xcp strains EK-11 and LB-2 at 8.4 cM and 2.4 cM, respectively. Markers U10400 and Y14600 were detected as flanking markers for the resistance gene to Xcp strain SC-4A at 2.4 cM and 7.2 cM, respectively. The symbols Xcp-1, Xcp-2, and Xcp-3 were assigned for the genes for resistance to Xcp strains EK-11, LB-2, and SC-4A, respectively. RAPD markers linked to the genes for resistance to Xcp could be used for transferring all of the resistance genes from P. acutifolius to a susceptible P. vulgaris cultivar.


Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 544-551 ◽  
Author(s):  
Yonghe Bai ◽  
T. E. Michaels ◽  
K. P. Pauls

Seven hundred and fifty-six random primers were screened with bulks of genomic DNA from common bacterial blight (CBB) resistant and susceptible bean plants. The plants were from a breeding population derived from an interspecific cross between Phaseolus acutifolius and Phaseolus vulgaris. Four RAPD markers, named R7313, RE416, RE49, and R4865, were found to be significantly associated with CBB resistance in this population. Forty-nine molecular markers segregating in the population were clustered into 8 linkage groups by a MAPMAKER linkage analysis. The largest linkage group was 140 cM long and contained 25 marker loci, including marker R4865. Markers R7313, RE416, and RE49 were clustered on another linkage group. A regression analysis indicated that the markers in these two groups together accounted for 81% of the variation in CBB resistance in the population. The addition of another marker, M56810, which was not individually associated with CBB resistance, increased the total contribution to the trait to 87%.Key words: Phaseolus vulgaris L., common bacterial blight (CBB), polymerase chain reaction (PCR), RAPD markers, linkage groups.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 499e-499
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Geunhwa Jung

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean(Phaseolus vulgaris L.). Gene estimation, associations of traits, and confirmation of QTL for resistance to Xcp were investigated in a recombinant inbred population derived from the backcross BC2F6 PC-50 (susceptible to Xcp) × XAN-159 (resistant to Xcp). One or two genes from XAN-159 controlled leaf resistance to Xcp. One major gene from XAN-159 was involved in controlling pod resistance to Xcp. Low (+0.24) to intermediate (+0.57 and +0.75) Pearson correlations were observed between leaf and pod reactions to Xcp. Purple flower color was associated with leaf and pod resistance to Xcp but not days to flower. One to 2 QTLs explained from 20 to 51% of the total phenotypic variation for leaf reactions to 5 Xcp strains. Two QTLs explained from 20 to 22% of the total phenotypic variation for pod reactions to Xcp strains EK-11 and DR-7. A marker BC437.1050 was associated with leaf and pod resistance to 5 Xcp strains in nearly all experiments, and accounted for 13% to 45% of the phenotypic variation for these traits. A unassigned marker D13.1000 was associated with only pod resistance to Xcp strains EK-11 and DR-7. Gene number (1 or 2) estimations and number of QTL (1 or 2) detected for resistance to Xcp generally agree. The confirmed marker BC437.1050 is expected to be useful in breeding programs for resistance to Xcp.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Jingying Zhang ◽  
Changhai Sui ◽  
Yanli Wang ◽  
Shuying Liu ◽  
Huimin Liu ◽  
...  

Background: Hosta plantaginea (Lam.) Aschers (HPA), a species in the family Liliaceae, is an important landscaping plant and herbaceous ornamental flower. However, because the flower has only two colors, white and purple, color matching applications are extremely limited. To date, the mechanism underlying flower color regulation remains unclear. Methods: In this study, the transcriptomes of three cultivars—H. plantaginea (HP, white flower), H. Cathayana (HC, purple flower), and H. plantaginea ‘Summer Fragrance’ (HS, purple flower)—at three flowering stages (bud stage, initial stage, and late flowering stage) were sequenced with the Illumina HiSeq 2000 (San Diego, CA, USA). The RNA-Seq results were validated by qRT-PCR of eight differentially expressed genes (DEGs). Then, we further analyzed the relationship between anthocyanidin synthase (ANS), chalcone synthase (CHS), and P450 and the flower color regulation by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG) network and pathway enrichment analyses. The overexpression of CHS and ANS in transgenic tobacco petals was verified using qRT-PCR, and the petal colors associated with the overexpression lines were confirmed using absorbance values. Results: Over 434,349 transcripts were isolated, and 302,832 unigenes were identified. Additionally, through transcriptome comparisons, 2098, 722, and 606 DEGs between the different stages were found for HP, HC, and HS, respectively. Furthermore, GO and KEGG pathway analyses showed that 84 color-related DEGs were enriched in 22 pathways. In particular, the flavonoid biosynthetic pathway, regulated by CHS, ANS, and the cytochrome P450-type monooxygenase gene, was upregulated in both purple flower varieties in the late flowering stage. In contrast, this gene was hardly expressed in the white flower variety, which was verified in the CHS and ANS overexpression transgenic tobacco petals. Conclusions: The results suggest that CHS, ANS, and the cytochrome P450s-regulated flavonoid biosynthetic pathway might play key roles in the regulation of flower color in HPA. These insights into the mechanism of flower color regulation could be used to guide artificial breeding of polychrome varieties of ornamental flowers.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 453E-453
Author(s):  
N. Mutlu ◽  
D.P. Coyne ◽  
S.O. Park ◽  
J.R. Steadman

Common bacterial blight (CBB) in common bean (Phaseolus vulgaris L.), caused by Xanthomonas campestris pv. phaseoli (Xcp), reduces bean yields and quality throughout the world. Pinto `Chase' is a high-yielding variety with moderate resistance to Xcp derived from great northern Nebraska #1 selection 27, whose resistance is derived from an unknown tepary (P. acutifolius) bean source. XAN-159 is a black mottled small seeded breeding line with different genes for high resistance to Xcp derived from a different tepary source (PI 319443). Our objective was to pyramid different genes for Xcp resistance from the donor parent XAN-159 into the rust-resistant recurrent parent Pinto `Chase' using the classical back-cross breeding method with confirmation of resistance using RAPD molecular markers. Resistance was confirmed in some BC2F2 generation plants. Seven RAPD markers and the V locus (flower color) previously identified were confirmed in the BC1 and BC2 populations. Smaller seed size, purple flower color, and black mottled seed coat color were coinherited with resistance to Xcp. However, a recombinant plant with enhanced CBB resistance and moderate-sized pinto seed was identified. Backcross breeding is being continued.


1999 ◽  
Vol 124 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Carlos A. Urrea ◽  
Phillip N. Miklas ◽  
James S. Beaver

High levels of resistance to common bacterial blight caused by Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp) have been observed for tepary bean (Phaseolus acutifolius A. Gray var. latifolius Freeman). However, the inheritance of resistance from this source is unknown for many lines. The inheritance of common bacterial blight resistance was studied in four tepary bean lines crossed with the susceptible tepary bean MEX-114. Progenies were inoculated with a single Xcp strain 484a. Segregation ratios in the F2 generation suggested that resistance in Neb-T-6-s and PI 321637-s was governed by one dominant gene, and Neb T-8a-s had two dominant genes with complementary effects. These hypotheses for inheritance of resistance were supported by various combinations of F1, F3, BC1Pn segregation data in all lines except PI 321637-s where an additional minor-effect gene with recessive inheritance was indicated. Generation means analyses corroborated that multiple resistance genes were present in PI 321638-s. Lack of segregation for susceptibility among testcrosses for allelism between Neb-T-6-s/PI 321637-s, Neb-T-6-s/Neb-T-8a-s, PI 321637-s/Neb-T-8a-s, and PI 321637-s/PI 321638-s, suggested that one or more loci conditioning resistance to common bacterial blight were in common across the four tepary lines.


1999 ◽  
Vol 124 (6) ◽  
pp. 654-662 ◽  
Author(s):  
H.M. Ariyarathne ◽  
D.P. Coyne ◽  
G. Jung ◽  
P.W. Skroch ◽  
A.K. Vidaver ◽  
...  

Diseases of beans (Phaseolus vulgaris L.) are primary constraints affecting bean production. Information on tagging and mapping of genes for disease resistance is expected to be useful to breeders. The objectives of this study were to develop a random amplified polymorphic DNA (RAPD) marker linkage map using 78 F9 recombinant inbred (RI) lines derived from a Middle-American common bean cross Great Northern Belneb RR-1 [resistant to common bacterial blight (CBB) and halo blight (HB)] × black A 55 [dominant I gene resistance to bean common mosaic potyvirus] and to map genes or QTL (quantitative trait loci) for resistance to CBB, HB, BCMV (bean common mosaic virus), and BCMNV (bean common mosaic necrosis virus) diseases. The RI lines were evaluated for resistance to leaf and pod reactions to Xanthomonas campestris pv. phaseoli (Xcp) (Smith Dye) strain EK-11, leaf reactions to two Pseudomonas syringae pv. phaseolicola (Psp) (Burkholder) Young et al. (1978) strains HB16 and 83-Sc2A, and BCMV strain US-5 and BCMNV strain NL-3. The linkage map spanned 755 cM, including 90 markers consisting of 87 RAPD markers, one sequence characterized amplified region (SCAR), the I gene, and a gene for hypersensitive resistance to HB 83-Sc2A. These were grouped into 11 linkage groups (LG) corresponding to the 11 linkage groups in the common bean integrated genetic map. A major gene and QTL for leaf resistance to HB were mapped for the first time. Three QTL for leaf reactions to HB16 were found on linkage groups 3, 5, and 10. Four regions on linkage groups 2, 4, 5, and 9, were significantly associated with leaf reactions to HB strain 83-Sc2A. The gene controlling the hypersensitive reaction to HB 83-Sc2A mapped to the same region as the QTL on LG 4. The I locus for resistance to BCMV and BCMNV was mapped to LG 2 at about 1.4 cM from RAPD marker A10.1750. Five and four markers were significantly associated with QTL for resistance to CBB in leaves and pods, respectively, with four of them associated with resistance in both plant organs. A marker locus was discovered on LG 10, W10.550, which could account for 44% and 41% of the phenotypic variation for CBB resistance in leaves and pods, respectively. QTL for resistance in pod to CBB, leaf resistance to HB, and the I gene were linked on LG 2.


Sign in / Sign up

Export Citation Format

Share Document