scholarly journals Absorption of Nutrient Elements on Single-node Cutting Rose `Versillia' as Affected by Mineral Nutrient Control in a Closed Hydroponic System

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768B-768
Author(s):  
Eun Young Yang* ◽  
Hye Jin Lee ◽  
Yong-Beom Lee

The application of a closed hydroponic system for rose poses some horticultural problems. The nutrient uptake by the plants changes constantly depending upon environmental conditions and growing stages, which results in the imbalanced composition of the drained solution and aggravates root environmental conditions. This research was aimed to observe the effect of mineral nutrient control method on the nutrient solution management in a closed hydroponic system. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, and Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macroelement control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). In the EC control method, the concentration of NO3 -N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth. The overall mineral nutrient content increased with S. On the other hand, the nutrient content of root environment was maintained optimally with M&M and M.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768A-768
Author(s):  
Eun Young Yang* ◽  
Keum Soon Park ◽  
Dong Soo Lee ◽  
Yong-Beom Lee

This study was conducted to understand the effect of different nutrient control method on the growth, cut-flower quality, root activity and fertilizer consumption. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macroelement control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). The mineral nutrient control method had significantly effected on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with other mineral nutrients control method. Although EC-A and EC-D could save total amount of fertilizer compared to M&M and M, the growth and quality of the rose with EC control system were lower than those with mineral nutrient control system. Therefore, these result suggest that EC control system is not economic method in a closed hydroponic system.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 768C-768
Author(s):  
Eun Young Yang* ◽  
Jung-Sim Oh ◽  
Yong-Beom Lee

This experiment was carried out to observe the effect of mineral nutrient control in photosynthetic capacity of single-node cutting rose grown in a closed hydroponic system. Single-node cutting rose `Versillia' was grown in aeroponics and DFT system and was irrigated with the nutrient solution of the Univ. of Seoul (NO3 -N 8.8, NH4 -N 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 me·L-1). Recirculated nutrient solution was managed by five different control method: macro- and micro-element control in aeroponic system (M&M); macro-element control in aeroponic system (M); nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system (EC-A); EC control in deep flow technique system (EC-D). The photosynthetic rate, stomatal conductance and transpiration rate at 35 days after transplant with M&M and M were higher compared to those with S, EC-A and EC-D. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Therefore, it is possible to increase photosynthetic capacity of rose with mineral nutrient control in recirculated nutrient solution.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 292
Author(s):  
Zienab F. R. Ahmed ◽  
Alghazal K. H. Alnuaimi ◽  
Amira Askri ◽  
Nikolaos Tzortzakis

Organic fresh products are appreciated and are gaining a good reputation regarding human health and environmental concerns. Despite the fact that hydroponics are commonly used in vegetable production, growers are looking for sustainable cultivation systems. Therefore, the objective of this study was to investigate the effect of using an organic-based nutrient solution (NS) derived from fish waste in a hydroponic system on the vegetative growth and production of lettuce compared to a conventional inorganic NS. Plant growth, yield, physiological and nutrient content parameters were determined. The results revealed that the overall growth and fresh biomass of the organic NS grown lettuce were relatively lower than those of the inorganic NS. Stomata density was significantly higher in inorganic grown lettuce compared to the organic one. However, the total chlorophyll, carotene, phenolic compounds, and flavonoid contents, as well as antioxidant activity were significantly higher in lettuce grown in organic NS compared to the inorganic one. Leaf nutrient content at harvest was significantly impacted by the type of used fertilizer. Based on these findings, in hydroponic system, organic liquid fertilizer derived from fish waste (as an alternative NS source) requires further improvements to achieve optimal growth and yield comparable to that of conventional inorganic NS.


Author(s):  
Divya Rathor ◽  
Sandhya Verma ◽  
Hitesh Solanki

Hydroponics is a technique for better plant production in a liquid nutrient solution and without use of soil or artificial media. In this method almost all terrestrial plants, ornamental crops, vegetables, and foliage plants can be grown with their roots immersed directly to the mineral nutrient solution. This system provides better and higher crop yields, minimize the time of production and there is no weeding or cultivation required. The effect of calcium and potassium concentration affect the shoot, root and on the growth of plants. It enhance the structural, physiological as well as morphological parameters of plants. It shows the better quality and high yield of crops. This review is focused on the effect of potassium and calcium on the growth and productivity of plants. This article also evaluates the role of K and Ca under hydroponic system to test the different parameters. KEYWORDS : Hydroponic, Potassium, Calcium, Growth and Productivity.


1958 ◽  
Vol 36 (2) ◽  
pp. 209-220 ◽  
Author(s):  
D. Gagnon ◽  
A. Lafond ◽  
L. P. Amiot

The nutrient content of the humus and of some of the plants characteristic of different site classes has been studied. Analyses carried out on fresh healthy leaf material from typical forest plants indicated no differences within a given species that could be related to site quality. Available nutrient content of the A0 horizon collected in the same environment is, however, closely related to the productivity of the sites. It seems, therefore, that the differential accumulation of nutrient elements in the cells of the forest plants studied depends upon the inherent properties of the species rather than on the quantity of available nutrients in the humus on which they grow.


2016 ◽  
Vol 29 (3) ◽  
pp. 656-664 ◽  
Author(s):  
HAMMADY RAMALHO E SOARES ◽  
ÊNIO FARIAS DE FRANÇA E SILVA ◽  
GERÔNIMO FERREIRA DA SILVA ◽  
RAQUELE MENDES DE LIRA ◽  
RAPHAELA REVORÊDO BEZERRA

ABSTRACT Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique), using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1). A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1) with four replications, totaling 24 plots for each experiment. The water added to compensate for the water - depth loss due to evapotranspiration (WCET) was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.


2011 ◽  
Vol 6 (No. 1) ◽  
pp. 21-29 ◽  
Author(s):  
H. Khaled ◽  
H.A. Fawy

In this study, the effects were investigated of salinity, foliar and soil applications of humic substances on the growth and mineral nutrients uptake of Corn (Hagein, Fardy10), and the comparison was carried out of the soil and foliar applications of humic acid treatments at different NaCl levels. Soil organic contents are one of the most important parts that they directly affect the soil fertility and textures with their complex and heterogenous structures although they occupy a minor percentage of the soil weight. Humic acids are an important soil component that can improve nutrient availability and impact on other important chemical, biological, and physical properties of soils. The effects of foliar and soil applications of humic substances on the plant growth and some nutrient elements uptake of Corn (Hagein, Fardy10) grown at various salt concentrations were examined. Sodium chloride was added to the soil to obtain 20 and 60mM saline conditions. Solid humus was applied to the soil one month before planting and liquid humic acids were sprayed on the leaves twice on 20<sup>th</sup> and 40<sup>th</sup> day after seedling emergence. The application doses of solid humus were 0, 2 and 4 g/kg and those of liquid humic acids were 0, 0.1 and 0.2%. Salinity negatively affected the growth of corn; it also decreased the dry weight and the uptake of nutrient elements except for Na and Mn. Soil application of humus increased the N uptake of corn while foliar application of humic acids increased the uptake of P, K, Mg,Na,Cu and Zn. Although the effect of interaction between salt and soil humus application was found statistically significant, the interaction effect between salt and foliar humic acids treatment was not found significant. Under salt stress, the first doses of both soil and foliar application of humic substances increased the uptake of nutrients.


Sign in / Sign up

Export Citation Format

Share Document