scholarly journals Plant Regeneration from Protocorm-derived Callus of Five Paphiopedilum Hybrids

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1101D-1101
Author(s):  
Michael Compton

Callus was induced from protocorms of five Paphiopedilum hybrids (Paph. 03-1, Paph. 03-4, Paph. 03-5, Paph. 03-6, and Paph. 03-7) on callus induction medium [MS inorganics (412.5 mg NH4NO3 instead of 1650 mg and 475 mg KNO3 instead of 1900 mg) and vitamins plus (per liter) 0.1 g myo-inositol, 30 g sucrose, and 2.5 g Gelrite; pH 5.5] containing various concentrations and combinations of thidiazuron (TDZ; 4.5 and 45 μm) and 2,4-D (4.5 and 45 μm). Callus formation was greatest for protocorms of Paph. 03-1, Paph. 03-4, Paph. 03-6, and Paph. 03-7. Among the most competent hybrids, callus formation was greatest among protocorms induced in medium containing 4.5 μm 2,4-D and 4.5 to 45 μm TDZ. Induced calli were transferred to 100 × 15 mm petri dishes containing 25 mL of PLB and plant regeneration medium (similar to callus induction medium) containing various concentrations of either benzyladenine (BA; 0.5, 5, or 10 μm), TDZ (0.25, 2.5, or 5 μm) or no growth regulator (control). PLB and plant formation was greatest on medium containing BA.

2015 ◽  
Vol 804 ◽  
pp. 259-262
Author(s):  
Chonnikarn Khunchuay ◽  
Kanokporn Sompornpailin

The optimum ratios of auxin and cytokinin are necessary for callus induction and plant regeneration. This ratio is a key function involving in the promoting cell division and proliferation in tissue culture. The axillary buds of in vitro plantlets fromVetiveria nemoralisA. Camuscv. Roiet were used as explants for the callus induction experiment. These explants were cultured on Murashige & Skoog (MS) medium [1] supplemented with various combinations of auxins and cytokinins. Under this experimental study, the highest frequency of callus induction was found on MS medium supplemented with 2 mgL-1α-naphthalene acetic acid (NAA) and 1 mgL-12-furanylmethyl-1H-purine-6-amine (kinetin) (62.5%). On the other hand the combination of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 6-benzylaminopurine (BAP) was toxicity to this explants. All culturing explants were dead and no calli appearance. The calli derived from each medium were transferred into the same regeneration medium (MS with 1 mgL-1NAA and 2 mgL-1BAP). After culturing on regeneration medium, calli induced from the highest callus induction medium have shown high frequencies of regeneration and also shoot number per callus (58.33% and 7.1 shoots).


2021 ◽  
Author(s):  
Mohib Abdullah ◽  
Elwira Sliwinska ◽  
Grzegorz Góralski ◽  
Piotr Latocha ◽  
Monika Tuleja ◽  
...  

Abstract Endosperm, an ephemeral and storage tissue, serves as a source of nutrition and protection during embryo development and germination. It can be used for the cultivation of polyploid plants in vitro. Here, a protocol of plant regeneration and acclimatization from the endosperm-derived calli of Actinidia arguta has been developed. Seeds excised from fresh fruit and dry seeds stored for one year served as the sources of endosperm explants of selected tetraploid cultivars of A. arguta. Callus Induction Medium (CIM; containing 0.25, 0.5, or 1 mg/l of TDZ) and Actinidia Endosperm Medium (AEM; containing 2 mg/l of 2,4-D and 5 mg/l of kinetin) were used to study the organogenic responses of the calli. On AEM, the source of explant did not significantly affect the rate of callus induction for any of the tested cultivars. Similarly, no organogenic events were observed. In contrast, on CIM both the source of explants and the cultivar origin caused significant differences in callus formation and subsequent organogenic events. Histological and ultrastructural analyses revealed the adventitious nature of shoot bud formation on these media. The most efficient elongation of shoot buds was achieved after transferring organogenic calli with adventitious shoot buds to a medium supplemented with zeatin or meta-topolin. Robust root induction with minimal basal callus formation occurred on the medium with indole-3-acetic acid. Flow cytometric analysis revealed that the nuclear DNA content in the leaves of some regenerants (4.5 pg/2C) was approximately 50% higher than that in the tetraploid seedlings (3.1 pg). This finding confirmed that those regenerants originated from the endosperm. The regeneration of hexaploid plants was more efficient when endosperm from fresh seeds served as an explant; therefore, fresh rather than dry seeds are recommended for endosperm-derived plant production. The hexaploid plants of A. arguta can serve as an important source of breeding material.


2016 ◽  
Vol 6 (2) ◽  
pp. 57
Author(s):  
Atmitri Sisharmini ◽  
Aniversari Apriana ◽  
Sustiprijatno Sustiprijatno

<p>Callus Induction and In Vitro Plant Regeneration of<br />Wheat Genotypes (Triticum aestivum L.). Atmitri<br />Sisharmini, Aniversari Apriana, and Sustiprijatno. Development<br />of a reliable in vitro plant regeneration procedure for<br />wheat is a prerequisite for its improvement by genetic transformation.<br />The purpose of this study was to obtain methods<br />of callus induction and regeneration of wheat genotypes.<br />This experiment was conducted at ICABIOGRAD. Immature<br />embryos from four wheat genotypes, ie Perdix, Naxos Wew,<br />Combi and Fasan were used to induce callus formation and<br />regeneration rate of callus. For the preparation of callus<br />induction medium, MS-L7 basal medium was supplemented<br />with combination of growth regulators 2,4 dichlorophenoxy<br />acetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid<br />(picloram). While, plant regeneration medium was prepared<br />using MS basal medium supplemented with combination of<br />three growth regulators i.e. IAA, BAP and kinetin. The results<br />showed that genotype, in vitro culture medium and growth<br />regulators played a dominant role in callus induction and<br />plantlet regeneration. All the 4 genotypes responded positively<br />to callus induction, however, variability was observed<br />not only among the genotypes but also within callus<br />induction medium used. The best induction medium was<br />the MS-L7 basal medium supplemented with combination of<br />phytohormon 4 mg/l 2,4-D + 2 mg/l picloram (GIK-3) which<br />showed 100% callus induction frequency. Whereas, the best<br />regeneration medium was shown by MS basal medium with<br />combination of phytohormon 1.5 mg/l BAP dan 0.5 mg/l<br />kinetin (RG3). Regarding plant regeneration, Perdix was the<br />most responsive genotype to be regenerated with regeneration<br />frequency of 57.33%. The successfully acclimatized<br />planlets in greenhouse were obtained from Perdix and<br />Naxos Wew genotypes. These results will potentially facilitate<br />genetic transformation research of wheat in Indonesia.</p>


2016 ◽  
Vol 3 (3) ◽  
pp. 127
Author(s):  
Nur Ajijah

<em>The composition of basal medium determines the regeneration success of in vitro culture. The study aimed to evaluate the effect of basal medium in the primary callus induction medium and explant type on the formation of cacao somatic embryo. The research was conducted at the Tissue Culture Laboratory of IAARD, Bogor, from June 2014 to December 2015. Primary callus induction derived from staminoid and petal explants of ICCRI 4 clone used two types of basal medium, i.e. DKW+ 9 µM 2.4-D + 1.16 µM kinetin or WPM + 9 µM 2.4-D + 1.16 µM kinetin.</em> <em>After 14 days, callus was subcultured onto secondary callus induction medium (WPM + 2.4-D 9 </em><em>μM + kinetin 0.58 μM), and then onto DKW medium without growth regulators to induce the formation of somatic embryo. The research was designed in two-factor factorial design with five replications. The first factor was the type of basal medium on the primary callus induction medium (DKW and WPM) and the second factor was the type of explants (petal and staminoid). The results showed significant interaction effect between basal medium type and explant type on the formation of callus and somatic embryo of cacao. The highest percentage of callus formation was derived from staminoid explants on the DKW basal salt medium (92.5%). However, the highest percentage of somatic embryo formation and the number of somatic embryo per explant were obtained from DKW basal salt medium with petal explants (36.5% and 2.3).</em> <em>Therefore, t</em><em>he use of DKW basal salt medium and petal explant were recommended for the induction of somatic embryo of the ICCRI 4 clone.</em>


2012 ◽  
Vol 40 (2) ◽  
pp. 140 ◽  
Author(s):  
Hafiz Mamoon REHMAN ◽  
Iqrar Ahmad RANA ◽  
Siddra IJAZ ◽  
Ghulam MUSTAFA ◽  
Faiz Ahmad JOYIA ◽  
...  

Dalbergia sissoo Roxb. ex DC. (Sissoo) is a native forest tree species in Pakistan. Many ecological and economical uses are associated with this premier timber species, but dieback disease is of major concern. The objective of this study was to develop a protocol for in vitro regeneration of Sissoo that could serve as target material for genetic transformation, in order to improve this species. Callus formation and plantlet regeneration was achieved by culturing cotyledons, immature seeds, and mature embryos on a modified Murashige and Skoog (1962) (MS) medium supplemented with plant growth regulators. Callus induction medium containing 2.71 ?M 2, 4-dichlorophenoxyacetic acid (2,4-D) and 0.93 ?M kinetin produced better callus on all explants tested compared to other treatments, such as 8.88 ?M 6-benzylaminopurine (BA) and 2.69 ?M ?-naphthalene acetic acid (NAA), or 2.71 ?M 2, 4-D and 2.69 ?M NAA. Shoot regeneration was best on MS medium containing 1.4 ?M NAA and 8.88 ?M BA compared to other treatments, such as 1.4 ?M NAA and 9.9 ?M kinetin, or 2.86 ?M indole-3-acetic acid and 8.88 ?M BA. Murashige and Skoog medium containing 1.4 NAA ?M and 8.88 ?M BA was better in general for regeneration regardless of callus induction medium and the type of explant used. Rooting was best on half-strength MS medium with 7.35 ?M indole-3-butyric acid. Regenerated plantlets were acclimatized for plantation in the field. Preliminary genetic transformation potential of D. sissoo was evaluated by particle bombardment of callus explants with a pUbiGus vector. The bombarded tissue showed transient Gus activity 1week after bombardment. Transformation of this woody tree is possible provided excellent regeneration protocols. The best combination for regeneration explained in this study is one of such protocols.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2620
Author(s):  
Dmitry Miroshnichenko ◽  
Anna Klementyeva ◽  
Sergey Dolgov

Triticum timopheevii Zhuk. is a tetraploid wheat that is utilized worldwide as a valuable breeding source for wheat improvement. Gene-based biotechnologies can contribute to this field; however, T. timopheevii exhibits recalcitrance and albinism in tissue cultures, making this species of little use for manipulation through genetic engineering and genome editing. This study tested various approaches to increasing in vitro somatic embryogenesis and plant regeneration, while reducing the portion of albinos in cultures derived from immature embryos (IEs) of T. timopheevii. They included (i) adjusting the balance between 2,4-D and daminozide in callus induction medium; (ii) cultivation using various darkness/illumination schedules; and (iii) inclusion of additional concentrations of copper ions in the tissue culture medium. We achieved a 2.5-fold increase in somatic embryogenesis (up to 80%) when 50 mg L−1 daminozide was included in the callus induction medium together with 3 mg L−1 2,4-D. It was found that the dark cultivation for 20–30 days was superior in terms of achieving maximum culture efficiency; moreover, switching to light in under 2 weeks from culture initiation significantly increased the number of albino plants, suppressed somatic embryogenesis, and decreased the regeneration of green plants. Media containing higher levels of copper ions did not have a positive effect on the regeneration of green plants; contrarily, the elevated concentrations caused albinism in plantlets. The results and relevant conclusions of the present study might be valuable for establishing an improved protocol for the regeneration of green plants in tissue cultures of T. timopheevii.


1970 ◽  
Vol 14 ◽  
pp. 31-38 ◽  
Author(s):  
M Rahman ◽  
M Asaduzzaman ◽  
N Nahar ◽  
MA Bari

Somatic embryos were obtained from cotyledon and midrib explants of Solanum melongena L., cultivar Loda. For callus induction, medium was supplemented with different concentrations of auxin singly or in combination with BAP. The best callusing 83-85% was obtained from both of the explants cultured on MS medium containing 2.0 mgl-1NAA + 0.05 mgl-1BAP. Somatic embryogenesis and shoot regeneration was achieved after transferring the calli to MS medium supplemented with BAP, GA3, NAA and Zeatin. Cotyledon derived calli showed better performance (87%) for regeneration than that of midrib (82%) when sub cultured on MS medium having 2.0 mgl-1 Zeatin + 1.0 mgl-1 BAP. For root induction, MS + 3.0 mgl-1 IBA was proved to be better treatment for average number (14-15) and mean length (12 cm) of roots than those of other treatments. Key words: Eggplant; cotyledon; midrib; callus induction; somatic embryo J. bio-sci. 14: 1-9, 2006


Sign in / Sign up

Export Citation Format

Share Document