scholarly journals Evaluation of Winter Squash and Pumpkin Cultivars for Age-related Resistance to Phytophthora capsici Fruit Rot

HortScience ◽  
2016 ◽  
Vol 51 (10) ◽  
pp. 1251-1255 ◽  
Author(s):  
Charles S. Krasnow ◽  
Mary K. Hausbeck

Phytophthora capsici annually threatens production of cucurbit and solanaceous crops. Long-lived oospores produced by the pathogen incite primary infection of susceptible plants when conditions are wet. Limiting the rot of winter squash and pumpkin (Cucurbita sp.) fruits is difficult due to the long maturation period when fruits are often in direct contact with infested soil. Genetic resistance to fruit rot is not widely available within Cucurbita sp.; however, age-related resistance (ARR) to P. capsici fruit rot develops in specific cultivars during maturation. The objective of this study was to evaluate the fruits of 12 cultivars of Cucurbita pepo, Cucurbita moschata, and Cucurbita maxima for ARR to P. capsici using a mycelial-plug inoculation method. All Cucurbita pepo and Cucurbita moschata cultivars displayed ARR; 7 days postpollination (dpp) fruits were susceptible, limited lesion development occurred on fruits 22 dpp, and lesions did not develop at 56 dpp. Disease developed on both Cucurbita maxima cultivars tested at 7, 14, 22, and 56 dpp. Firmness of fruit exocarps was measured with a manual penetrometer. Exocarp firmness of all cultivars increased during maturation; however, there was no correlation between firmness and disease incidence among cultivars at 22 dpp (R2 = −0.01, P = 0.85). When fruits of cultivars expressing ARR at 22 dpp were wounded before inoculation, fruit rot developed.

2020 ◽  
Vol 110 (2) ◽  
pp. 447-455 ◽  
Author(s):  
Safa A. Alzohairy ◽  
Raymond Hammerschmidt ◽  
Mary K. Hausbeck

Phytophthora capsici is a destructive pathogen of cucurbits that causes root, crown, and fruit rot. Winter squash (Cucurbita spp.) production is limited by this pathogen in Michigan and other U.S. growing regions. Age-related resistance (ARR) to P. capsici occurs in C. moschata fruit but is negated by wounding. This study aimed to determine whether structural barriers to infection exist in the intact exocarp of maturing fruit exhibiting ARR. Five C. moschata cultivars were evaluated for resistance to P. capsici 10, 14, 16, 18, and 21 days postpollination (dpp). Scanning electron microscopy imaging of Chieftain butternut fruit exocarp of susceptible fruit at 7 dpp and resistant fruit at 14 and 21 dpp revealed significant increases in cuticle and epidermal thicknesses as fruit aged. P. capsici hyphae penetrated susceptible fruit at 7 dpp directly from the surface or through wounds before 6 h postinoculation (hpi) and completely degraded the fruit cell wall within 48 hpi. Resistant fruit remained unaffected at 14 and 21 dpp. The high correlation between the formation of a thickened cuticle and epidermis in maturing winter squash fruit and resistance to P. capsici indicates the presence of a structural barrier to P. capsici as the fruit matures.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 446-552 ◽  
Author(s):  
M. D. Meyer ◽  
M. K. Hausbeck

Phytophthora fruit rot, caused by Phytophthora capsici, is a major constraint to cucurbit production for the processing industry in Michigan. Age-related resistance to Phytophthora fruit rot has been identified in pepper and some cucurbit fruit. In this study, ‘Dickenson Field’ processing pumpkin (Cucurbita moschata) and ‘Golden Delicious’ winter squash (C. maxima) were evaluated for age-related resistance to Phytophthora fruit rot. Hand-pollinated fruit were harvested 3, 7, 10, 14, 21, 28, 42, or 56 days post pollination (dpp), and inoculated with P. capsici isolate 12889. Susceptibility to Phytophthora fruit rot decreased with fruit age in Dickenson Field processing pumpkin, whereas Golden Delicious winter squash remained susceptible to fruit rot even as fruit reached full physiological maturity. Less than 15% of Dickenson Field fruit 21 dpp or older became diseased. Conversely, about 80% of Golden Delicious fruit 21 dpp or older became diseased. Lesion diameter and pathogen growth density ratings differed significantly (P < 0.0001) among fruit ages for both cultivars, and were negatively correlated (ρ = –0.37 to –0.87) with fruit age. Lesion diameter and pathogen growth were generally greater on younger fruit than older fruit. Lesion diameter was greatest on 7- and 10-dpp-old fruit of Dickenson Field and Golden Delicious, respectively. Pathogen growth density ratings were greatest on 3-dpp-old fruit of both cultivars. Several morphological and physiological changes were observed as fruit matured. Soluble solids content and exocarp firmness of both cultivars increased with fruit age. Lesion diameter and pathogen growth density ratings were negatively correlated (ρ = –0.29 to –0.73) with soluble solids content and exocarp firmness.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 472g-473
Author(s):  
D.P. Coyne ◽  
J.M. Reiser ◽  
D. Smith ◽  
L. Sutton ◽  
D. Lindgren ◽  
...  

`Butterbowl' (NE-RBN-4) is a novel, small-sized (0.8 to 1.36 kg), flavorful (sweet), early maturing (90–95 days), near-oblate butternut type winter squash variety (Cucurbita moschata Duch. Ex Poir). No Butternut squash variety is similar in shape to `Butterbowl'. `Butterbowl' (S6) was derived from selfing a near-oblate open-pollinated S4 line derived from a cross of two true breeding crookneck lines (allelic test) NE-BNCR-67-1-7 (mutant out of `Butternut 23') X golden Cushaw (Agway Co.). Total fruit yield and fruit weight of `Butterbowl' were nearly similar to Butternut `Ponca'. The total fruit weight of'Waltham' was greater than `Butterbowl' in two out of four trials. The vining habit of `Butterbowl' (1.7 to 2.0 m) is more compact than `Waltham' or `Ponca'. `Butterbowl' is suitable for small gardens with limited space due to its compact plant habit. No crookneck fruit developed in `Butterbowl' in all tests. `Butterbowl' is resistant to bacterial spot, black fruit rot, and vine borer while it is moderately susceptible to powdery mildew. `Butterbowl' fruit should be used for consumption up to 45 to 55 days after harvest because slight fruit shriveling occurs at that time due to moisture loss. The fruit cooks uniformally in a microwave oven due to its more uniform flesh thickness.


1980 ◽  
Vol 37 (2) ◽  
pp. 757-761
Author(s):  
Luiz Antonio Rochelle

De sete cultivares de aboboreiras rasteiras, pertencentes à espécie Cucurbita moschata Duch., duas morangueiras e duas mogangueiras, da espécie Cucurbita maxima Duch., uma aboboreira nao rasteira e uma morangueira pertencente a Cucurbita pepo L., elaborou-se chaves analíticas para determina-los, fundamentando-se nos caracteres morfológicos do caule e das folhas.


2009 ◽  
Vol 134 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Kaori Ando ◽  
Sue Hammar ◽  
Rebecca Grumet

Phytophthora capsici causes severe losses in vegetable production, including many cucurbit crops. Our previous work showed that cucumber (Cucumis sativus) fruit are most susceptible to P. capsici when they are very young and rapidly elongating, but develop resistance as they approach full length at 10 to 12 days postpollination (DPP). In this study, fruit from seven additional cucurbit crops representing four species, melon (Cucumis melo), butternut squash (Cucurbita moschata), watermelon (Citrullus lanatus), and zucchini, yellow summer squash, acorn squash, and pumpkin (Cucurbita pepo), were tested for the effect of fruit development on susceptibility to P. capsici. Field-grown fruit of the different crops varied in overall susceptibility. Zucchini and yellow summer squash were the most susceptible, with the majority of fruit exhibiting water-soaking symptoms within 24 hours postinoculation. Fruit from all of the crops exhibited size-related decrease in susceptibility, but to varying degrees. Cucumber had the most pronounced effect. In infested fields, cucumber fruit were found to be most frequently infected at the blossom end. Comparison of the peduncle and blossom end showed a difference in susceptibility along the length of the fruit for cucumber, butternut squash, and zucchini. Greenhouse-grown, hand-pollinated pumpkin, acorn squash, and butternut squash showed an age-related decrease in susceptibility similar to field-grown fruit. For all of these fruit, a pronounced reduction in susceptibility accompanied the transition from the waxy green to green stage at ≈3 to 8 DPP.


1994 ◽  
Vol 119 (6) ◽  
pp. 1193-1199 ◽  
Author(s):  
Nancy E. Roe ◽  
Peter J. Stoffella ◽  
Herbert H. Bryan

Increasing disposal problems with polyethylene (PL) mulch and greater availability of compost prompted an investigation into the effects of using compost as a mulch on horizontal raised bed surfaces with living mulches (LMs) on vertical surfaces. Wood chips (WC), sewage sludge-yard trimming (SY) compost, and municipal solid waste (MW) compost were applied at 224 t·ha-1 on bed surfaces. Sod strips of `Jade' (JD) or `Floratam' (FT) St. Augustinegrass (Stenotaphrum secundatum Kuntze) or perennial peanut (Arachis glabrata Benth.) (PP) or seeds of a small, seed-propagated forage peanut (Arachis sp.) (SP) were established on the vertical sides of the raised beds before transplanting bell pepper (Capsicum annuum L.) into the beds. Phytophthora capsici reduced pepper plant stand in PL-mulched plots compared with organic mulch (OM) and LM. Despite the stand reduction, total pepper yields were highest in PL plots and, in the OM plots, decreased in the order SY > MW > WC. Early fruit yields and yield per plant were highest from plants in PL plots followed by SY. Among LMs, plants in SP plots produced highest early yields and FT produced the lowest. Plants in PL plots produced the largest fruit. When the same plots were seeded with winter (butternut) squash (Cucurbita pepo L.), plant stands were higher in MW than WC and SY. Squash yields were similar between PL and OM plots.


2017 ◽  
Vol 35 (4) ◽  
pp. 599-603 ◽  
Author(s):  
Ricardo B Pereira ◽  
Frederick M Aguiar ◽  
Tiago B Torres ◽  
Geovani Bernardo Amaro ◽  
Gilvaine C Lucas ◽  
...  

RESUMO Phytophthora capsici causa prejuízos significativos em cultivos de abóbora (Cucurbita moschata) e morangas (Cucurbita maxima), incluindo a podridão de raízes e coroa, o crestamento foliar e a podridão de frutos, o que pode resultar em até 100% de perdas na produção. O objetivo deste estudo foi avaliar a reação de genótipos de abóboras e morangas a P. capsici. Inicialmente um experimento foi realizado para avaliar a agressividade de isolados de P. capsici de diferentes regiões. Posteriormente, dois experimentos foram realizados em casa de vegetação com 16 genótipos de C. moschata e sete de C. maxima em anos distintos, utilizando os isolados PCA 40 e PCA 43, identificados como os mais agressivos em teste preliminar. Como testemunhas foram utilizadas a cultivar híbrida Jabras e a cultivar de pimentão Cascadura Ikeda (padrões de suscetibilidade ao patógeno). Os genótipos foram semeados em vasos contendo solo autoclavado. Quatorze dias após, as plantas foram inoculadas mediante a deposição de 3,0 mL de suspensão a 2,0x104 zoósporos/mL no solo, próximo ao coleto das plantas. A incidência da doença foi avaliada 8 dias após a inoculação. Os experimentos foram conduzidos em delineamento de blocos casualizados, com cinco repetições e parcelas de quatro plantas. Os genótipos apresentaram diferentes níveis de resistência à doença, TX 10350, PHYT-043, CNPH-3001-1 e MAM-2523-1 se destacaram por apresentarem maior resistência à doença em ambos os experimentos. Contudo, nenhum dos genótipos apresentou resistência completa. Os resultados indicam o uso promissor destes genótipos para a obtenção de linhagens resistentes, visando a obtenção de cultivares híbridas resistentes à podridão de fitóftora.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 1996-1999 ◽  
Author(s):  
Les D. Padley ◽  
Eileen A. Kabelka ◽  
Pamela D. Roberts ◽  
Ronald French

Phytophthora capsici causes several disease syndromes on Cucurbita pepo L. (squash, pumpkin, and gourd), including crown rot, foliar blight, and fruit rot, which can lead up to 100% crop loss. Currently, there are no C. pepo cultivars resistant or tolerant to this pathogen, which can aid in disease management strategies. The objective of this study was to evaluate a select group of C. pepo accessions for resistance to the crown rot syndrome of P. capsici. One hundred fifteen C. pepo accessions, from 24 countries, were evaluated for their disease response to inoculation with a suspension of three highly virulent P. capsici isolates from Florida. Replications of each accession, including susceptible controls, were planted in the greenhouse using a randomized complete block design. At the second to third true leaf stage, each seedling was inoculated at their crown with a 5-mL P. capsici suspension of 2 × 104 zoospores/mL. Fourteen days after inoculation, the plants were visually rated on a scale ranging from 0 (no symptoms) to 5 (plant death). Mean disease rating scores (DRS) and sds were calculated for each accession and ranged from 1.3 to 5.0 and 0 to 2.0, respectively. Eight accessions with the lowest mean DRS were rescreened. Results paralleled those of the initial study with one accession, PI 181761, exhibiting the lowest mean DRS at 0.5. Further screening and selection of accessions from the C. pepo germplasm collection should aid in the development of breeding lines and cultivars with resistance to crown rot caused by P. capsici.


Sign in / Sign up

Export Citation Format

Share Document