scholarly journals Evaluation of Native and Nonnative Ornamentals as Pollinator Plants in Florida: I. Floral Abundance and Insect Visitation

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 126-136
Author(s):  
Heather Kalaman ◽  
Sandra B. Wilson ◽  
Rachel E. Mallinger ◽  
Gary W. Knox ◽  
Edzard van Santen

Diverse floral resources impart immense value for pollinating insects of all types. With increasing popularity and demand for modern ornamental hybrids, cultivation by breeders has led to selection for a suite of traits such as extended bloom periods and novel colors and forms deemed attractive to the human eye. Largely understudied is pollinator preference for these new cultivars, as compared with their native congeners. To address this gap in understanding, 10 species of popular herbaceous flowering plants, commonly labeled as pollinator-friendly, were evaluated at two sites in Florida [U.S. Department of Agriculture (USDA) cold hardiness zones 8b and 9a] and across three seasons for their floral abundance and overall attractiveness to different groups of pollinating insects. Each genus, apart from pentas, encompassed a native and nonnative species. Native species included blanket flower (Gaillardia pulchella), lanceleaf coreopsis (Coreopsis lanceolata), pineland lantana (Lantana depressa), and scarlet sage (Salvia coccinea). Nonnative species included Barbican™ yellow-red ring blanket flower (G. aristata ‘Gaiz005’), Bloomify™ rose lantana (L. camara ‘UF-1011-2’), mysty salvia (S. longispicata ×farinacea ‘Balsalmysty’), Lucky Star® dark red pentas (Pentas lanceolata ‘PAS1231189’), ruby glow pentas (P. lanceolata ‘Ruby glow’) and Uptick™ Gold & Bronze coreopsis (Coreopsis × ‘Baluptgonz’). Flower-visiting insects were recorded during five-minute intervals in the morning and categorized into the following morpho-groups: honey bees, large-bodied bees (bumble and carpenter bees), other bees (small to medium-bodied native bees), butterflies/moths, and wasps. Floral abundance and pollinator visitation varied widely by season, location, and species. Of the plant species evaluated, nonnative plants produced nearly twice as many flowers as native plants. About 22,000 floral visitations were observed. The majority of visits were by native, small to medium-bodied bees (55.28%), followed by butterflies and moths (15.4%), large-bodied native bees (11.8%), wasps (10.0%), and honey bees (7.6%). Among plant genera, both native and nonnative coreopsis and blanket flower were most attractive to native, small to medium-bodied bees (e.g., sweat bees, leafcutter bees) with the greatest number of visitations occurring during the early and midmonths of the study (May–August). Across the study, butterflies and moths visited lantana more frequently than all other ornamentals evaluated, whereas pentas were most attractive to wasps. Large-bodied bees visited plants most frequently in May and June, primarily foraging from both native and nonnative salvia. While results from this study showed nominal differences between native and nonnative species in their ability to attract the studied pollinator groups, care should be taken to making similar assessments of other modern plant types.

2019 ◽  
Vol 23 (5-6) ◽  
pp. 803-817 ◽  
Author(s):  
Rosi Rollings ◽  
Dave Goulson

Abstract There is great interest in planting urban areas to benefit pollinating insects, with the potential that urban areas and gardens could act as an extensive network of pollinator-friendly habitats. However, there are a great many different plant cultivars available to the gardener, and a paucity of evidence-based advice as to which plants are truly most attractive to flower-visiting insects. Here, we report insect visitation to metre square plots of 111 different ornamental plant cultivars at a site in central UK. Data were collected over 5 years, and comprise over 9000 insect observations, which were identified to species (for honeybees and bumblebees) or as ‘solitary bees’, Syrphidae, Lepidoptera and ‘others’. Unlike some previous studies, we found no difference in numbers of insects attracted to native or non-native species, or according to whether plants were annuals, biennials or perennials, but we did find that native plants attracted a significantly higher diversity of flower-visiting insects. Overall, the most-visited plants were Calamintha nepeta, Helenium autumnale and Geranium rozanne. However, patterns of visitation were quite different for every insect taxa examined. For example, different species of short-tongued bumblebees showed little overlap in their most-preferred plant cultivars. Interestingly, very similar plant cultivars often attracted different insect communities; for example, 72% of visitors to Aster novi belgii were honeybees or bumblebees, while the related Anthemis tinctoria, which also has daisy-like flowers, did not attract a single honeybee or bumblebee but was popular with solitary bees, hoverflies, and ‘other’ pollinators. Some plant cultivars such as Eryngium planum and Myosotis arvensis were attractive to a broad range of insects, while others attracted only a few species but sometimes in large numbers, such as Veronicastrum virginicum and Helenium autumnale which were both visited predominantly by honey bees. It is clear that we do not yet fully understand what factors drive insect flower preferences. Recommendations are made as to which flower cultivars could be combined to provide forage for a diversity of pollinator groups over the season from early spring to autumn, though it must be born in mind that some plants are likely to perform differently when grown in different environmental conditions.


2020 ◽  
Vol 15 (2) ◽  
pp. 225-228
Author(s):  
P V Rami Reddy

Decline in honey bee populations has become a matter of concern and their conservation is very essential to sustain essential ecosystem services. They provide making available continuous supply of floral resources is of immense value in conserving honey bees. The effectiveness of an ornamental creeper, Antigonon leptopus Hook. & Arn as a sustainable bee forage plant was evaluated. It attracts four major native species of honey bees viz., Apis cerana, A. florea, A. dorsata and Tetragonula iridipennis. The wild little bee, A. florea was the most dominant forager followed by the Indian bee, A. cerana. The plant is amenable for easy multiplication through seeds as well as cuttings and meets both aesthetic and ecological needs. Using Antigonon, different studies related to honey bees like assessing species diversity, foraging behaviour, temperature driven shifts etc. can be carried out. Popularising perennial bee flora like Antigonon would help in conserving honey bees in both natural and urban habitats. Since Antigonon attracts all species of honey bees throughout the year, it could be utilized as a potential bioindicator of honey bee populations in a given environment.


2019 ◽  
Author(s):  
Lise Ropars ◽  
Isabelle Dajoz ◽  
Colin Fontaine ◽  
Audrey Muratet ◽  
Benoît Geslin

AbstractAs pollinator decline is increasingly reported in natural and agricultural environments, cities are perceived as shelters for pollinators because of low pesticide exposure and high floral diversity throughout the year. This has led to the development of environmental policies supporting pollinators in urban areas. However, policies are often restricted to the promotion of honey bee colony installations, which resulted in a strong increase in apiary numbers in cities. Recently, competition for floral resources between wild pollinators and honey bees has been highlighted in semi-natural contexts, but whether urban beekeeping could impact wild pollinators remains unknown. Here, we show that in the city of Paris (France), wild pollinator visitation rates is negatively correlated to honey bee colony densities present in the surrounding (500m – slope = −0.614; p = 0.001 – and 1000m – slope = −0.489; p = 0.005). More particularly, large solitary bees and beetles were significantly affected at 500m (respectively slope = −0.425, p = 0.007 and slope = - 0.671, p = 0.002) and bumblebees were significantly affected at 1000m (slope = - 0.451, p = 0.012). Further, lower interaction evenness in plant-pollinator networks was observed with honey bee colony densities within 1000 meter buffers (slope = −0.487, p = 0.008). Finally, honey bees tended to focus their foraging activity on managed rather than spontaneous plant species (student t-test, p = 0.001) whereas wild pollinators equally visited managed and spontaneous species. We advocate responsible practices mitigating the introduction of high density of hives in urban environments. Future studies are needed to deepen our knowledge about the potential negative interactions between wild and domesticated pollinators.


2021 ◽  
Vol 8 ◽  
Author(s):  
James D. Ackerman

Apis species are a major component of pollinator faunas in their native and introduced habitats. A widespread concern is that non-native Apis mellifera may have negative effects on native pollinators and on plant reproduction. This is based on the assumptions that natural communities are at capacity, resource competition structures communities, native pollinators are more effective pollinators of native species, yet A. mellifera are superior competitors. The latter two assumptions are often true, but evidence from the Neotropics indicates that tropical communities are not tightly structured, and the foraging flexibilities of native bees maintain their populations. However, the less diverse and disharmonic biotas of islands may limit the buffering capacity of flexible behaviors. While few studies address these assumptions or the ecological and evolutionary consequences of A. mellifera to the flora and fauna of tropical islands, an accumulation of taxon-specific studies are suggesting that such effects run the spectrum from subtle and indirect to obvious and direct. A concerted research effort is needed to address the multitude of issues to develop strategies to ameliorate or enhance honey bee effects, or just let nature take its course.


2017 ◽  
Vol 4 (1) ◽  
Author(s):  
Denise Monique Dubet da Silva Mouga ◽  
Bruna Tereza Possamai ◽  
Enderlei Dec

Aiming to verify the relationships between native bees and floral resources in an urban area, their interactions were observed in Joinville, state of Santa Catarina, southern Brazil. Observations were established, lasting 8 hours daily, during different periods from 2009 to 2015. Bees and plants, after preparation, were identified and registered in a database. We sampled 3,073 bees, all of which 1042 were wild native species. The collected bees are included in 34 species and 44 morphospecies (Halictinae-35, Megachilinae-17, Apinae non corbiculate-15, Apinae corbiculate- 10, Andreninae-1). With the exception of Apis mellifera, the most abundant bee taxa sampled were Trigona spinipes (330 individuals), Xylocopa brasilianorum (92) and Pseudaugochlora graminea (92). Euglossini females and species poorly sampled in inventories such as Leiopodus lacertinus, Thygater (Thygater) armandoi, Anthodioctes megachiloides and Coelioxys aculeaticeps were captured. The bees were sampled over 83 botanical species of 38 families. The most visited botanical families were Lamiaceae and Asteraceae. The richness of the studied area is lower than those of other nearby compared places, indicating probably a decrease of the apifauna. The found diversity previews the place as a possible refuge.


2021 ◽  
Vol 178 ◽  
pp. 87-93
Author(s):  
Georgia Hennessy ◽  
Ciaran Harris ◽  
Lucien Pirot ◽  
Alexandra Lefter ◽  
Dave Goulson ◽  
...  

2015 ◽  
Vol 44 (4) ◽  
pp. 999-1010 ◽  
Author(s):  
Katherine E. Ellis ◽  
Mary E. Barbercheck

Author(s):  
Marika Vogelzang

In this study I determined the effectiveness of pollinator gardens by testing if visitation rate and diversity of flower-visiting insects is higher in pollinator gardens compared to other ornamental plantings. I observed pollinator visitation for individual plant taxa, per unit area, in three different pollinator gardens, eight ornamental gardens and eight ornamental planters on the Queen’s University campus in Kingston, Ontario, Canada. Visitation was about 4- times higher in pollinator gardens compared to the other two ornamental garden types and visitor richness (the number of types of pollinators) in pollinator gardens was about 6- times higher compared to ornamental gardens, and about 3- times higher compared toornamental planters. The results of this study conclude that the planting of pollinator gardens is an effective way of supporting pollinator populations in urban areas.


2019 ◽  
Author(s):  
Richard Rizzitello ◽  
Chuan-Jie Zhang ◽  
Carol Auer

AbstractCamelina sativa (camelina) is an oilseed crop in the Brassicaceae that has been genetically engineered for the production of biofuels, dietary supplements, and other industrial compounds. Cultivation in North America is both recent and limited, so there are gaps in knowledge regarding yield, weed competition, and pollen-mediated gene flow. For these experiments, camelina ‘SO-40’ was grown for three years without weed control. Spring-sown camelina was harvested at 80-88 days with ∼1200 growing degree days (GDD) with yields of 425-508 kg/hectare. Camelina yields were the same with or without weeds, showing competitive ability in low-management conditions. Crop failure in 2015 was associated with delayed rainfall and above-average temperatures after seeding. Camelina flowers attracted pollinating insects from the Hymenoptera, Diptera, Lepidoptera, and Coleoptera. Hymenoptera included honey bees (Apis melifera), mining bees (Andrenidae), sweat bees (Halictidae), bumble bees (Bombus spp.) and leaf cutter bees (Megachilidae). Insect visitation on camelina flowers was associated with modest increases in seed yield. Honey bees comprised 28-33% of all pollinators and were shown to carry camelina pollen on their legs. Air sampling showed that wind-blown pollen was present at low concentrations at 9 m beyond the edges of the field. These experiments demonstrated for the first time that camelina pollen dispersal could occur through honey bees or wind, although bee activity would likely be more significant for long-distance gene flow.


Sign in / Sign up

Export Citation Format

Share Document