scholarly journals Field Evaluation of Resistance to White Pine Blister Rust of Selected Blackcurrant Genotypes in Poland

2000 ◽  
Vol 10 (3) ◽  
pp. 567-569 ◽  
Author(s):  
Stanislaw Pluta ◽  
Agata Broniarek-Niemiec

Field resistance to white pine blister rust (WPBR) (Cronartium ribicola J. C. Fischer) was investigated on 53 black currant (Ribes nigrum L.) genotypes (cultivars and breeding selections) in 1998 and 1999. Uredia did not form on the black currant `Titania' and 17 advanced selections during field evaluations made at the Experimental Orchard at Dabrowice, near Skierniewice, Poland.

Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 461-464 ◽  
Author(s):  
D. T. Dalton ◽  
J. D. Postman ◽  
K. E. Hummer

Hosts for the fungus Cronartium ribicola, causal agent of white pine blister rust (WPBR), include five-needle pines as aecial hosts, and currants and gooseberries as uredinial/telial hosts. Aeciospores produced on diseased pine, and urediniospores produced on diseased Ribes plants, can infect Ribes foliage. Resistance and susceptibility for both spore types have been reported for Ribes; however, the comparative infectivity of these spore types on clonal Ribes nigrum genotypes is under-described. Immunity, resistance, and susceptibility to WPBR resides at a clonal level in Ribes. Previous studies have emphasized fungal diversity or forestry considerations, rather than horticultural aspects. The objective of this study was to determine if aeciospores and urediniospores were equally infective to specific genotypes of black currant, Ribes nigrum, with differential responses. A family of 51 black currant genotypes from a cross between a known-immune cultivar containing the Cr gene and a susceptible cultivar was examined. Single-leaf softwood cuttings of each of these genotypes were artificially inoculated with a spore solution and incubated in airtight plastic containers within a growth chamber. Inoculations were replicated three times for each spore type. Twenty-two of the F1 genotypes did not develop uredia after artificial inoculation. These may be immune; 22 developed uredia after exposure to both types of inoculum, and were susceptible; whereas seven exhibited differential responses and may have some mechanism for resistance to WPBR other than the Cr gene. The infectivity of aeciospores and urediniospores was not significantly different on specific Ribes genotypes. Either spore type can therefore be considered equally effective as inoculum when screening for WPBR resistance or immunity in horticultural settings.


2000 ◽  
Vol 10 (3) ◽  
pp. 555-556 ◽  
Author(s):  
Margie Luffman

The search for appropriate white pine blister rust (WPBR) (Cronartium ribicola J.C. Fischer) resistant germplasm to use in black currant (Ribes nigrum L.) breeding programs began in 1935 in Ottawa. Crosses were made in 1938 and 1939 with three different Ribes L. species and two standard black currant cultivars. The resulting seedlings from these crosses were evaluated for rust resistance. Three promising selections resulted from this program and were named `Coronet', `Crusader' and `Consort'.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1589-1589 ◽  
Author(s):  
Z. A. Frederick ◽  
S. Villani ◽  
K. D. Cox ◽  
L. Los ◽  
J. Allen

Since the relaxation of federal sanctions on the planting of Ribes crops because of the development of white pine blister rust (WPBR) immune Ribes cultivars (3), a small industry for the production of Ribes fruit for fresh and processing markets was established in New York and surrounding New England states. The majority of Ribes acreage in the region is planted to a WPBR immune black currant R. nigrum cv. Titania. From 2008 to June 2011, symptoms resembling those caused by WPBR pathogen Cronartium ribicola were observed at a large (>12 ha) R. nigrum cv. Titania planting in Preston, CT. In 2008, infection was restricted to a single field (100% incidence), but in 2009, all fields suffered from premature defoliation by late July. In 2010 and 2011, there was considerable incidence (>85%), but premature defoliation was kept in check by chemical management. Symptoms began as chlorotic lesions (0.5 to 4.3 mm in diameter) on both sides of the leaf. These chlorotic lesions had margins delineated by leaf veins and many developed necrotic (0.3 to 0.9 mm in diameter) centers on the upper surface of leaves within 2 to 3 weeks. The undersides of lesions developed blisters containing orange uredinia (0.1 to 0.33 mm in diameter) with smooth peridia that broke with the production of yellow-orange urediniospores (30 × 15 to 25 μm). Symptoms and signs were consistent with published descriptions of C. ribicola (1) and with WPBR infections on highly susceptible R. nigrum cv. Ben Alder planted at the New York State Agricultural Experiment Station in Geneva. Additional confirmation was provided by sequencing the two internal transcribed spacer (ITS) regions and the 5.8S gene (GenBank Accession No. JN587805; 98% identity with No. DQ533975) in the nuclear ribosomal repeat using primers ITS1-F and ITS4 as described previously (2,4). Furthermore, an attempt was made to confirm pathogenicity in the greenhouse by inoculating shoots of potted nursery stock of R. nigrum cv. Titania. Shoots were inoculated by rubbing leaves with either an uninfected currant leaf or a currant leaf from Preston, CT sporulating with urediniospores. Plants were subsequently misted with dH20 and covered with plastic bags for 24 h. Plants were watered biweekly and kept in a greenhouse with 39 to 65% relative humidity at 21 to 26°C. Shoots were monitored for symptom development on a weekly basis. After 3 weeks, 2 of the 10 plants inoculated with infected leaves developed chlorotic lesions and uredinia identical to those on leaves from Preston, CT, while all others remained healthy. Although not easily reproducible in a greenhouse, the breakdown of immunity in R. nigrum cv. Titania was observed for the last 4 years in Connecticut. Given that WPBR immunity was one of the conditions for legalized planting of Ribes, the breakdown of immunity has potentially deleterious implications particularly for nearby states like Massachusetts and New York, in which the Ribes industries are expanding. Moreover, Ribes growers may need to rely on chemical management programs to manage WPBR in the future. References: (1) G. B. Cummins. Illustrated Genera of Rust Fungi. Burgess Publishing Company, Minneapolis, MN, 1959. (2) M. Gardes and T. D. Bruns. Mol. Ecol. 2:113, 1993. (3) S. McKay. Hortic. Technol. 10:562, 2000. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA, 1990.


Author(s):  
G. F. Laundon

Abstract A description is provided for Cronartium ribicola. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on numerous members of Pinus sect. Strobus (= sect. Cembra) (white pines) especially P. albicaulis, P. lambertiana, P. monticola and P. strobus; uredia and telia on almost all Ribes and Grossularia species, the cultivated black currant being particularly susceptible. DISEASE: White pine blister rust, currant rust. Causes stem cankers on pines and leaf lesions on currants. GEOGRAPHICAL DISTRIBUTION: Asia, Europe and N. America (CMI Map 6, ed. 3). TRANSMISSION: Overwinters almost exclusively on pines from which aeciospores may be blown hundreds of kilometres (7: 813) to infect Ribes leaves through stomata (Spaulding, 1922). In contrast, basidiospores (38: 393) travel only a few hundred metres to infect pine needles through stomata (Patton & Johnson, 1970), from where the mycelium grows into the stem to form cankers. The importation of large quantities of white pine seedlings from Europe at the turn of the century carried the disease to N. America (Spaulding, 1922; 1929).


2000 ◽  
Vol 10 (3) ◽  
pp. 544-545 ◽  
Author(s):  
Paul J. Zambino

Artificially inoculated single-leaf cuttings and small plants consistently differentiated european black currant (Ribes nigrum L.) cultivars susceptible to white pine blister rust (WPBR; Cronartium ribicola J.C. Fisch.) from immune cultivars carrying the Cr resistance gene. Black currant cultivars Consort, Crusader, and Titania showed no signs of infection with any of 21 strains of WPBR, suggesting that strains able to overcome immunity conferred by the Cr resistance gene, if they exist, are uncommon in North America. However, in red currant (Ribes rubrum L.), two sources of material presumed to represent the immune cultivar Viking showed no resistance to infection. All rust strains infected and sporulated as if the cultivar were fully susceptible, casting doubt on the true identity of available sources of `Viking'.


1996 ◽  
Vol 72 (6) ◽  
pp. 637-638 ◽  
Author(s):  
Jean A. Bérubé

White pine seedlings were treated with triadimefon two weeks prior to natural inoculation with Cronartium ribicola and were observed for two growth seasons. During the second growth season in the greenhouse the incidence of blister rust symptoms was 70.8% for the untreated controls, whereas only 3.8% of the treated seedlings showed symptoms of blister rust. Triadimefon offers effective protection against white pine blister rust infection and would enable the production of bare root seedlings in areas prone to blister rust infection.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154267 ◽  
Author(s):  
Jun-Jun Liu ◽  
Danelle Chan ◽  
Yu Xiang ◽  
Holly Williams ◽  
Xiao-Rui Li ◽  
...  

2007 ◽  
Vol 85 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Bryce A. Richardson ◽  
Paul J. Zambino ◽  
Ned B. Klopfenstein ◽  
Geral I. McDonald ◽  
Lori M. Carris

The white-pine blister rust fungus, Cronartium ribicola Fisch. in Rabenh., continues to spread in North America, utilizing various aecial (primary) and telial (alternate) hosts, some of which have only recently been discovered. This introduced pathogen has been characterized as having low genetic diversity in North America, yet it has demonstrated a capacity to invade diverse environments. The recent discovery of this rust fungus on the telial host Pedicularis racemosa Dougl. ex Benth., raises questions of whether this host association represents a recent acquisition by C. ribicola or a long-standing host association that was overlooked. Here we explore two questions: (i) is host specialization detectable at a local scale and (ii) is the capacity to infect Pedicularis racemosa local or widespread? Genetic analysis of C. ribicola isolates from different aecial and telial hosts provided no evidence for genetic differentiation and showed similar levels of expected heterozygosity within a geographic population. An inoculation test showed that diverse C. ribicola sources from across North America had the capacity to infect Pedicularis racemosa. These results support a hypothesis that ability to infect Pedicularis racemosa is common in C. ribicola from North America. Utilization of Pedicularis racemosa by C. ribicola may be dependent on the co-occurrence of this host, inoculum, and favorable environments.


Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1552-1552 ◽  
Author(s):  
D. L. Joly ◽  
D. W. Langor ◽  
R. C. Hamelin

In May 2003, a survey was conducted in southwestern Alberta, east of the Rocky Mountains, to determine the extent of the spread and genetic diversity of white pine blister rust, which is caused by Cronartium ribicola J.C. Fisch. Aeciospores were sampled from white pine blister rust cankers in three infected limber pine (Pinus flexilis James) stands separated from one another by 100 to 215 km. DNA genotypes were determined for 12 codominant PCR-SSCP (polymerase chain reaction-single strand conformation polymorphism) loci representing genes derived from an EST library. At each site sampled, some aecia displayed DNA genotypes that were heterozygous at all loci and possessed novel alleles (GenBank Accession Nos. DQ009533-DQ009611). At Waterton Lakes, Kananaskis County, and Porcupine Hills, 29%, 11%, and 3% of sampled aecia and 38%, 33%, and 10% of sampled trees, respectively, possessed these unusual profiles. In May 2004, similar genetic profiles were found at two of these sites, Waterton Lakes and Kananaskis County, at 17 and 25% of sampled aecia (25% of sampled trees). In each of these aecia, genotyping and sequence analysis revealed this pattern was due to the presence of one C. ribicola and one C. comandrae Peck. allele at each of the 12 loci. Scanning electron microscopy (SEM) revealed aeciospore morphology that was intermediate between C. ribicola and C. comandrae. Aeciospores were longer (16 to 20 × 25 to 40 μm) than the expected range for C. ribicola (18 to 20 × 22 to 31 μm) (3). They were also fusiform, obovoid or short-to-long ellipsoid, but not pyriform-acuminate as in C. comandrae, and without a true conspicuous smooth spot as in C. ribicola. This provides evidence for interspecific hybridization between C. ribicola and C. comandrae, the causal agent of comandra blister rust. We hypothesize that the presence of nearby C. comandrae-infected lodgepole pine (P. contorta Dougl.) could have led to spermatization of C. ribicola receptive hyphae by C. comandrae pycniospores, resulting in the formation of hybrid aecia. An important question is whether these hybrids have a different host range that could potentially extend its geographic range in areas where the telial host, Ribes spp. L., is not abundant. The hybrid rust Melampsora × columbiana Newcombe was shown to exhibit virulence against certain hybrid poplar clones that had previously been reported as resistant against both parental rusts (M. medusae Thuem. and M. occidentalis Jacks) and abundant pathogenic variation has been observed (2). Furthermore, the ability to colonize unexpected hosts could provide fitness advantages over parental species, as was observed in Phytophthora spp. pathogenic on alder (1). Host range and virulence assays should be conducted to assess the potential impact of this hybrid. References: (1) C. M. Brasier et al. Proc. Natl. Acad. Sci. USA 96:5878, 1999. (2) G. Newcombe et al. Phytopathology 91:981, 2001. (3) W. G. Ziller. The Tree Rusts of Western Canada. Can. For Serv. No. 1329. Pacific Forestry Center, Victoria, BC, 1974.


Sign in / Sign up

Export Citation Format

Share Document