scholarly journals Use of triadimefon to control white pine blister rust

1996 ◽  
Vol 72 (6) ◽  
pp. 637-638 ◽  
Author(s):  
Jean A. Bérubé

White pine seedlings were treated with triadimefon two weeks prior to natural inoculation with Cronartium ribicola and were observed for two growth seasons. During the second growth season in the greenhouse the incidence of blister rust symptoms was 70.8% for the untreated controls, whereas only 3.8% of the treated seedlings showed symptoms of blister rust. Triadimefon offers effective protection against white pine blister rust infection and would enable the production of bare root seedlings in areas prone to blister rust infection.

Author(s):  
G. F. Laundon

Abstract A description is provided for Cronartium ribicola. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on numerous members of Pinus sect. Strobus (= sect. Cembra) (white pines) especially P. albicaulis, P. lambertiana, P. monticola and P. strobus; uredia and telia on almost all Ribes and Grossularia species, the cultivated black currant being particularly susceptible. DISEASE: White pine blister rust, currant rust. Causes stem cankers on pines and leaf lesions on currants. GEOGRAPHICAL DISTRIBUTION: Asia, Europe and N. America (CMI Map 6, ed. 3). TRANSMISSION: Overwinters almost exclusively on pines from which aeciospores may be blown hundreds of kilometres (7: 813) to infect Ribes leaves through stomata (Spaulding, 1922). In contrast, basidiospores (38: 393) travel only a few hundred metres to infect pine needles through stomata (Patton & Johnson, 1970), from where the mycelium grows into the stem to form cankers. The importation of large quantities of white pine seedlings from Europe at the turn of the century carried the disease to N. America (Spaulding, 1922; 1929).


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154267 ◽  
Author(s):  
Jun-Jun Liu ◽  
Danelle Chan ◽  
Yu Xiang ◽  
Holly Williams ◽  
Xiao-Rui Li ◽  
...  

2000 ◽  
Vol 10 (3) ◽  
pp. 567-569 ◽  
Author(s):  
Stanislaw Pluta ◽  
Agata Broniarek-Niemiec

Field resistance to white pine blister rust (WPBR) (Cronartium ribicola J. C. Fischer) was investigated on 53 black currant (Ribes nigrum L.) genotypes (cultivars and breeding selections) in 1998 and 1999. Uredia did not form on the black currant `Titania' and 17 advanced selections during field evaluations made at the Experimental Orchard at Dabrowice, near Skierniewice, Poland.


2004 ◽  
Vol 21 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Jerome A. Krueger ◽  
Klaus J. Puettmann

Abstract White pine seedlings were underplanted under a range of overstory densities in a hardwood stand in northern Minnesota. Vegetation surrounding seedlings was left untreated (control), weeded annually, or completely removed through monthly weeding. After 4 years, the benefit of weeding woody competition for diameter growth of seedlings was limited to areas with relatively open overstory conditions. Seedling height growth was reduced in areas with higher overstory density, but improved through weeding treatments that removed woody vegetation. The removal of herbaceous vegetation did not improve growth of seedlings in any conditions. Open growing conditions created by overstory removal and weed control resulted in higher incidences of seedling injuries, e.g., through infection by white pine blister rust. Conditions for pine bark adelgids also were enhanced in areas with low overstory densities and weeding treatments. The incidence for white pine weevil seems to follow a similar pattern, although the number of trees infected was minimal. Results show that improving growing conditions through management of the overstory and understory vegetation improves seedling growth rates, but must be balanced with potentially higher incidences of seedling injuries under more open conditions.


2007 ◽  
Vol 85 (3) ◽  
pp. 299-306 ◽  
Author(s):  
Bryce A. Richardson ◽  
Paul J. Zambino ◽  
Ned B. Klopfenstein ◽  
Geral I. McDonald ◽  
Lori M. Carris

The white-pine blister rust fungus, Cronartium ribicola Fisch. in Rabenh., continues to spread in North America, utilizing various aecial (primary) and telial (alternate) hosts, some of which have only recently been discovered. This introduced pathogen has been characterized as having low genetic diversity in North America, yet it has demonstrated a capacity to invade diverse environments. The recent discovery of this rust fungus on the telial host Pedicularis racemosa Dougl. ex Benth., raises questions of whether this host association represents a recent acquisition by C. ribicola or a long-standing host association that was overlooked. Here we explore two questions: (i) is host specialization detectable at a local scale and (ii) is the capacity to infect Pedicularis racemosa local or widespread? Genetic analysis of C. ribicola isolates from different aecial and telial hosts provided no evidence for genetic differentiation and showed similar levels of expected heterozygosity within a geographic population. An inoculation test showed that diverse C. ribicola sources from across North America had the capacity to infect Pedicularis racemosa. These results support a hypothesis that ability to infect Pedicularis racemosa is common in C. ribicola from North America. Utilization of Pedicularis racemosa by C. ribicola may be dependent on the co-occurrence of this host, inoculum, and favorable environments.


Plant Disease ◽  
2006 ◽  
Vol 90 (12) ◽  
pp. 1552-1552 ◽  
Author(s):  
D. L. Joly ◽  
D. W. Langor ◽  
R. C. Hamelin

In May 2003, a survey was conducted in southwestern Alberta, east of the Rocky Mountains, to determine the extent of the spread and genetic diversity of white pine blister rust, which is caused by Cronartium ribicola J.C. Fisch. Aeciospores were sampled from white pine blister rust cankers in three infected limber pine (Pinus flexilis James) stands separated from one another by 100 to 215 km. DNA genotypes were determined for 12 codominant PCR-SSCP (polymerase chain reaction-single strand conformation polymorphism) loci representing genes derived from an EST library. At each site sampled, some aecia displayed DNA genotypes that were heterozygous at all loci and possessed novel alleles (GenBank Accession Nos. DQ009533-DQ009611). At Waterton Lakes, Kananaskis County, and Porcupine Hills, 29%, 11%, and 3% of sampled aecia and 38%, 33%, and 10% of sampled trees, respectively, possessed these unusual profiles. In May 2004, similar genetic profiles were found at two of these sites, Waterton Lakes and Kananaskis County, at 17 and 25% of sampled aecia (25% of sampled trees). In each of these aecia, genotyping and sequence analysis revealed this pattern was due to the presence of one C. ribicola and one C. comandrae Peck. allele at each of the 12 loci. Scanning electron microscopy (SEM) revealed aeciospore morphology that was intermediate between C. ribicola and C. comandrae. Aeciospores were longer (16 to 20 × 25 to 40 μm) than the expected range for C. ribicola (18 to 20 × 22 to 31 μm) (3). They were also fusiform, obovoid or short-to-long ellipsoid, but not pyriform-acuminate as in C. comandrae, and without a true conspicuous smooth spot as in C. ribicola. This provides evidence for interspecific hybridization between C. ribicola and C. comandrae, the causal agent of comandra blister rust. We hypothesize that the presence of nearby C. comandrae-infected lodgepole pine (P. contorta Dougl.) could have led to spermatization of C. ribicola receptive hyphae by C. comandrae pycniospores, resulting in the formation of hybrid aecia. An important question is whether these hybrids have a different host range that could potentially extend its geographic range in areas where the telial host, Ribes spp. L., is not abundant. The hybrid rust Melampsora × columbiana Newcombe was shown to exhibit virulence against certain hybrid poplar clones that had previously been reported as resistant against both parental rusts (M. medusae Thuem. and M. occidentalis Jacks) and abundant pathogenic variation has been observed (2). Furthermore, the ability to colonize unexpected hosts could provide fitness advantages over parental species, as was observed in Phytophthora spp. pathogenic on alder (1). Host range and virulence assays should be conducted to assess the potential impact of this hybrid. References: (1) C. M. Brasier et al. Proc. Natl. Acad. Sci. USA 96:5878, 1999. (2) G. Newcombe et al. Phytopathology 91:981, 2001. (3) W. G. Ziller. The Tree Rusts of Western Canada. Can. For Serv. No. 1329. Pacific Forestry Center, Victoria, BC, 1974.


Sign in / Sign up

Export Citation Format

Share Document