scholarly journals Initial Growth of Seedlings of Flame Azalea in Response to Day/Night Temperature

1992 ◽  
Vol 117 (2) ◽  
pp. 216-219 ◽  
Author(s):  
Asiah A. Malek ◽  
Frank A. Blazich ◽  
Stuart L. Warren ◽  
James E. Shelton

Seedlings of flame azalea [Rhododendron calendulaceum (Michx.) Torr] were grown for 12 weeks under long-day conditions with days at 18, 22, 26, or 30C for 9 hours in factorial combination with nights at 14, 18, 22, or 26C for 15 hours. Total plant dry weight, top dry weight, leaf area, and dry weights of leaves, stems, and roots were influenced by day and night temperatures and their interactions. Dry matter production was lowest with nights at 14C. Root, leaf, top, and total dry weights were maximized with days at 26C in combination with nights at 18 to 26C. Stem dry weight was maximized with days at 26 to 30C and nights at 22C. Leaf area was largest with days at 18 and 26C in combination with nights at 18 or 26C. Within the optimal, day/night temperature range of 26 C/18-26C for total plant dry weight, there was no evidence that alternating temperatures enhanced growth. Shoot: root ratios (top dry weight: root dry weight) were highest with days at 18 and 30C. Leaf area ratio (total leaf area: total plant dry weight) was highest and specific leaf area (total leaf area: leaf dry weight) was largest when days and nights were at 18C and were lower at higher temperatures. Regardless of day/night temperature, leaf weight ratio (leaf dry weight: total plant dry weight) was higher than either the stem weight ratio (stem dry weight: total plant dry weight) or root weight ratio (root dry weight: total plant dry weight). Net leaf photosynthetic rate increased with day temperatures up to 30C.

1992 ◽  
Vol 117 (5) ◽  
pp. 736-739 ◽  
Author(s):  
Asiah A. Malek ◽  
Frank A. Blazich ◽  
Stuart L. Warren ◽  
James E. Shelton

Seedlings of mountain laurel (Kalmia latifolia L.) were grown for 16 weeks under long-day conditions with days at 18, 22, 26, or 30C for 9 hours in factorial combination with nights at 14, 18, 22, or 26C for 15 hours. Total plant dry weight, top dry weight, and dry weights of leaves, stems, and roots were influenced by day and night temperatures. The night optimum for all dry weight categories was 22C. Dry matter production was lowest with nights at 14C. Total plant dry weight and dry weights of tops, leaves, and stems were maximized with days at 26C, but for roots the optimum was 22C. Dry weight accumulation was lower with days at 18 or 30C. Responses of leaf area were similar to that of total plant dry weight, with optimum days and nights at 26 and 22C, respectively. Within the optimal day/night temperature range of 22-26/22C for dry weights, there was no evidence that alternating temperatures enhanced growth. Shoot: root ratios (top dry weight: root dry weight) increased with day temperatures up to 30C and were highest with nights at 14 or 26C. Leaf weight ratio (leaf dry weight: total plant dry weight) decreased with increasing night temperature, and increased curvilinearly in response to day temperature with the minimum at 26C. Stem weight ratio (stem dry weight: total plant dry weight) increased with increasing day or night temperature. Root weight ratio (root dry weight: total plant dry weight) was highest with nights at 18 or 22C and decreased with days >22C. Net leaf photosynthetic rate was maximized with days at 26C.


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1298-1302 ◽  
Author(s):  
D. Bradley Rowe ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Catawba rhododendron (Rhododendron catawbiense Michx.) seedlings of two provenances, Johnston County, N.C. (35°45′N, 78°12′W, elevation = 67 m), and Yancey County, N.C. (35°45′N, 82°16′W, elevation = 1954 m), were grown in controlled-environment chambers for 18 weeks with days at 18, 22, 26, or 30C in factorial combination with nights at 14, 18, 22, or 26C. Shoot and root dry weights and total leaf areas of seedlings of the Yancey County provenance (high elevation) exceeded (P ≤ 0.05) those of the Johnston County (low elevation) provenance at all temperature combinations. Leaf area was maximal at 22/22C, 18/26C, and 22/26C and minimal at 30/14C (day/night). Shoot dry weight responded similarly. Root dry weight decreased linearly with increasing day temperature, but showed a quadratic response to night temperature. Leaf weight ratio (leaf dry weight: total plant dry weight) increased, while root weight ratio (root dry weight: total plant dry weight) decreased with increasing day temperature. Leaf weight ratio was consistently higher than either stem or root weight ratios. Day/night cycles of 22 to 26/22C appear optimal for seedling growth.


HortScience ◽  
1993 ◽  
Vol 28 (7) ◽  
pp. 705-707 ◽  
Author(s):  
Mark C. Starrett ◽  
Frank A. Blazich ◽  
Stuart L. Warren

Rosebay rhododendron (Rhododendron maximum L.) seedlings were grown in controlled-environment chambers for 14 weeks under long (9-hour) days at 18, 22, 26, or 30C in factorial combination with 15-hour nights at 14, 18, 22, or 26C. Total dry-matter production was lowest for 18C days and highest for 26C days. A similar response occurred for top, leaf, root, and stem dry weights. Nights at 22C maximized total plant, top, leaf, and stem dry weights. The optimum day/night cycle for dry-matter production was 26/22C. Leaf area was optimum with 18C nights. Leaf weight ratio (leaf dry weight: total plant dry weight) increased with an increase in night temperature to a maximum at 22C. Root weight ratio (root dry weight: total plant dry weight) decreased with an increase in night temperature to a minimum at 22C. Stem weight ratio (stem dry weight: total plant dry weight) and shoot: root ratio (top dry weight: root dry weight) were not influenced significantly by day or night temperature. A day/night cycle of 26/22C seems to be optimal for producing-salable plants.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Lia Karlina Br Sembiring ◽  
Rosita Sipayung ◽  
Irsal

Massive breeding is often the case with the availability of the amount of water that can be stored on the media. The aim of this research is to know the influence of media and the frequency of watering on the growth of robusta coffee seedlings and to find the best media and optimum watering frequency. This experiment was conducted at the Faculty of Agriculture, University of Sumatera Utara, Medan from June to September 2017. The experimental method used was Factorial Randomized Block Design with 2 treatment factors, ie 1: planting medium ie, topsoil ; topsoil: sand (2: 1); topsoil: rice husk (2: 1), topsoil: charcoal husk (2: 1) and factor 2: watering frequency ie, watered once a day; watered every 4 days; watered 7 days and watered once every 10 days. The variable was plant height, stem diameter, total leaf number, total leaf area, fresh crown weight, canopy dry weight, fresh root weight, root dry weight, longest root, and canopy and root ratio. The results showed that planting media treatment had a significant effect on plant height variables, stem diameter increase, leaf number, total leaf area, fresh crown weight, canopy dry weight, fresh root weight, root dry weight, and root canopy ratio. The best treatment of planting medium was found in topsoil treatment: rice husk (2: 1). The treatment of watering frequency had a significant effect on the stem diameter 2 - 12 of the week after planting move observation variable, total leaf area, fresh crown weight, dry crown weight, fresh root weight, and dry weight of roots. The best treatment frequency of watering hose is watering every 4 days. The interaction between the two treatments had a significant effect on the diameter of the stem diameter variable, the total leaf area and the fresh weight of the canopy.


1999 ◽  
Vol 17 (3) ◽  
pp. 107-113
Author(s):  
Laura G. Jull ◽  
Frank A. Blazich ◽  
L. Eric Hinesley

Abstract Seedlings of Atlantic white-cedar [Chamaecyparis thyoides (L.) B. S. P.] were grown in controlled-environment chambers for 12 weeks under short-or long-day conditions with 9-hr days at 18, 22, 26 or 30C (64, 72, 79 or 86F) in factorial combination with 15-hr nights at 14, 18, 22 or 26C (57, 64, 72 or 79F). Dry matter production was influenced by photoperiod and day/night temperature. For all day temperature × photoperiod interactions, except root:shoot ratio, growth was highest under long days. Day × night temperature interactions occurred for all growth measurements except root dry weight. Root dry weight was highest at 30/22C (86/72F); top (shoot) dry weight at 26/22C (79/72F). Nights of 14C (57F) resulted in the lowest top dry weight. Total plant dry weight was highest at nights of 22C (72F) for all day temperatures. At days of 30C (86F), total plant dry weight was highest with nights ≤ 22C (72F); however, data for 30/22C (86/72F) and 26/22C (79/72F) were similar. The highest root: shoot ratio occurred at nights of 14C (57F) with days ≤ 26C (79F). Mean relative growth rate was highest at nights of 22C (72F) with days of 26C (79F) or 30C (86F). Maximum stem caliper occurred at days of 22C (72F) with nights ≥ 18C (64F). Height and crown width were highest at 26/22C (79/72F). A day/night cycle of 30/22C (86/72F) with long days was optimal for seedling growth.


1991 ◽  
Vol 9 (3) ◽  
pp. 163-167
Author(s):  
Stuart L. Warren ◽  
Frank A. Blazich ◽  
Mack Thetford

Abstract Uniconazole was applied as a foliar spray or medium drench to six woody landscape species: ‘Sunglow’ azalea; flame azalea; ‘Spectabilis’ forsythia; ‘Compacta’ holly; ‘Nellie R. Stevens’ holly; and mountain pieris. One hundred days after uniconazole application, leaf, stem, and top dry weight of all species, except flame azalea and mountain pieris, decreased as uniconazole concentration increased. Compared to controls, stem and leaf dry weight were reduced by uniconazole 18 to 60% and 13 to 32%, respectively, depending on species and method of application. Stem dry weight was reduced to a greater degree, compared to leaf dry weight. For all species, drench application was more effective than foliar spray in reducing leaf, stem, and top dry weight. Leaf area of ‘Spectabilis’ forsythia and ‘Nellie R. Stevens’ holly decreased with increasing rates. However, specific leaf weight was not affected. Uniconazole did not significantly affect leaf net photosynthetic rate, stomatal conductance or internal leaf CO2 concentrations in ‘Spectabilis’ forsythia or ‘Nellie R. Stevens’ holly. No phytotoxicity was observed on any species.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1074c-1074
Author(s):  
Richard J. McAvoy

Poinsettias, Euphorbia pulcherrima Willd. cvs Lilo and Diva Starlight, were exposed to either warm day-cool night or cool day-warm night greenhouse temperature regimes. Day time temperatures were imposed between 900 to 1600 HR. Within each temperature regime, poinsettias were grown single stem or pinched and drenched with either 0.04 or 0.08 mg a.i. uniconazole per 1.6 1 pot or grown as untreated controls. Light levels (PAR) and potting medium and plant canopy temperatures were continuously monitored.Over the course of the study, the day-night temperature differential (DIF), in the plant canopy, averaged 4.2C in the warm day regime and -1.4C in the cool day regime. The average daily temperature was lower (16.9C) in the warm day regime than in the cool day regime (18.7C).DIF treatment significantly affected final leaf area, leaf and total plant dry weight, leaf area ratio and specific leaf weight, The DIF treatment by cultivar interaction was significant for final poinsettia leaf area, stem, leaf and total plant dry weight, break number and average break length. Uniconazole significantly affected final plant height, stem and total plant dry weight, break number, average break length and specific leaf weight. Uniconazole by DIF treatment effects were not significant,


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 635-639 ◽  
Author(s):  
Kent E. Cushman ◽  
Muhammad Maqbool ◽  
Patrick D. Gerard

American mayapple (Podophyllum peltatum L.) is a rhizomatous herbaceous perennial found in wooded areas of eastern North America and is a source of the pharmaceutical compound podophyllotoxin. To explore the possible domestication of this species, this research examined strategies for establishing mayapple in field plantings using organic mulches. Mayapple rhizome segments were harvested from the wild and transplanted to raised beds in northern Mississippi in Fall 2001. Two types of mulch (pine bark or wheat straw), two depths of mulch (7.5 or 15 cm), and two planting depths (0 or 5 cm) of rhizome segments were examined in a factorial arrangement and randomized complete block design. Data were recorded during spring of 2002 and 2003. Shoot number was not affected by mulch depth, but there was a significant interaction between mulch type and rhizome planting depth. Rhizome segments planted 0 cm deep and covered with straw mulch produced about 30% fewer shoots compared to any of the other treatment combinations. Number of emerging shoots was also affected by year, with a 33% increase in shoots from 2002 to 2003. Total leaf area and total leaf dry weight were not affected by mulch depth, but there was a significant three-way interaction between mulch type, rhizome planting depth, and year. During 2002, treatment combinations were not different, but during 2003 rhizome segments planted 0 cm deep and covered with straw mulch produced less leaf area and leaf dry weight than any of the other treatment combinations. The ratio of sexual shoots to total shoots was affected by year, with a higher ratio of sexual shoots occurring in 2002 than 2003. Grasses established in bark mulch to a greater extent than in straw mulch in 2002, but weed control was excellent for all treatments in 2003. These results indicate that rhizome segments planted 0 cm deep and covered with straw mulch consistently produced fewer shoots with less leaf area and dry mass compared to any other treatment combination. We preferred bark mulch, but we can recommend either bark or straw mulch for the purpose of establishing field plantings of american mayapple in full sun as long as rhizome planting depth is 5 cm. There was no difference between the two mulching depths used in this study; therefore, a mulch depth of 7.5 cm can be recommended because of its lower cost.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 648c-648
Author(s):  
W. Alan Erb ◽  
Mark Pyeatt

This study was conducted in the greenhouse by running two experiments at different temperature regimes (22°C day and 13°C night and 33°C day and 22°C night). One-year-old tissue culture propagated plants were irrigated at three different soil moisture tension levels (5, 15, and 30 cnbars) and either exposed to moving or still air. The moving air treatment was created by two 51-cm-diameter fans running at either low (5.6 mph) or medium (8.2 mph) speed. Each experiment included, forty-eight plants arranged in a randomized complete block design. Each block consisted of a greenhouse bench containing two fans, a plastic dividing wall and two plant replications for each treatment. Canopy volume measurements were taken at the beginning, middle and end of each experiment to estimate growth rate. At the end of each experiment, total leaf area and leaf, stem and root dry weight data were collected. In the moderate temperature experiment, the still air treated plants had the highest canopy volume and leaf weight ratio while the moving air treated plants had the highest stem weight ratio. The only difference for the moisture treatments was the 5-cnbar treatment had the highest canopy volume. In the high temperature experiment, the still air treated plants had the highest canopy volume, total leaf area, leaf dry weight, shoot/root ratio, leaf weight ratio and leaf area duration while the moving air treated plants had the highest root weight ratio. The 5-cnbar treatment had the highest canopy volume and biomass accumulations. The 30-cnbar treatment had the highest root weight ratio.


2019 ◽  
Vol 3 (2) ◽  
pp. 85
Author(s):  
Yan Hariadi Lubis ◽  
Ellen Lumisar Panggabean ◽  
Azhari Azhari

<h1>In the Indonesian economy, the oil palm commodity plays a pretty bright role because it serves as a source of foreign exchange. The need to develop technology in producing superior seeds. In this study discuss about the Influence of Giving Fertilizer and Mikoriza Against the Growth of Palm Oil Plants (Elaeis guineensis jacq.) In Pre-Nursery Nursery. This study aims to determine the effect of manure and mycorrhizal fertilization as well as its interaction on the growth of coconut plants in pre-nursery nurseries. The study was designed by Factorial Randomized Block Design consisting of 2 treatment factors. The first factor of treatment of manure (K) consisting of 4 levels, namely: K0 = 0 kg / polybag, K1 = 0.15 kg / polybag, K2 = 0.30 kg / polybag, and K3 = 0.45 kg/polybag. The second factor of mycorrhizal treatment (M) consisting of 4 levels, namely: M1 = 12.5 g/polybag, M2 = 25.0 g/polybag, M3 = 37.5 g / polybag. The results showed that the treatment of cow manure up to 0.45 kg/polybag can increase the height of seedlings, stem diameter, total leaf area, wet weight of seedlings and dry weight of seedlings, but did not affect the number of oil palm seedlings.Mikoriza treatment up to 37, 5 g / polybags can increase seed height, stem diameter, total leaf area, wet weight of seedlings and dry weight of seedlings, but have no significant effect on the number of oil palm seedlings. The interaction between cow manure and mycorrhiza had no effect on all parameters observed.</h1>


Sign in / Sign up

Export Citation Format

Share Document