scholarly journals Mapping Freeze Tolerance Quantitative Trait Loci in a Citrus grandis × Poncirus trifoliata F1 Pseudo-testcross Using Molecular Markers

2003 ◽  
Vol 128 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Courtney A. Weber ◽  
Gloria A. Moore ◽  
Zhanao Deng ◽  
Fred G. Gmitter

Mapping quantitative trait loci (QTL) associated with freeze tolerance was accomplished using a Citrus grandis (L.) Osb. × Poncirus trifoliata (L.) Raf. F1 pseudo-testcross population. A progeny population of 442 plants was acclimated and exposed to temperatures of -9 °C and -15 °C in two separate freeze tests. A subpopulation of 99 progeny was genotyped for random amplified polymorphic DNA (RAPD), cleaved amplified polymorphic sequence (CAPS), sequence characterized amplified region (SCAR), and sequence tagged site (STS) markers to produce a linkage map for each parent. Potential QTL were identified by interval mapping, and their validity was corroborated with results from means comparison (t test), one-way analysis of variance (F test), and bulked segregant analysis (BSA). Multiple analytical methods provided evidence supporting putative QTL and decreased the probability of missing significant QTL associated with freeze tolerance. QTL with a large effect on freeze tolerance were located on both the Citrus and Poncirus linkage maps. In addition, clusters of markers with significantly different means between marker present and absent classes indicating minor QTL that contribute smaller effects on the level of tolerance were found on the linkage maps of both species.

Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1537-1545 ◽  
Author(s):  
G J Hunt ◽  
R E Page ◽  
M K Fondrk ◽  
C J Dullum

Abstract We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1203-1213 ◽  
Author(s):  
Greg J Hunt ◽  
Ernesto Guzmán-Novoa ◽  
M Kim Fondrk ◽  
Robert E Page

Abstract A study was conducted to identify quantitative trait loci (QTLs) that affect colony-level stinging behavior and individual body size of honey bees. An F1 queen was produced from a cross between a queen of European origin and a drone descended from an African subspecies. Haploid drones from the hybrid queen were individually backcrossed to sister European queens to produce 172 colonies with backcross workers that were evaluated for tendency to sting. Random amplified polymorphic DNA markers were scored from the haploid drone fathers of these colonies. Wings of workers and drones were used as a measure of body size because Africanized bees in the Americas are smaller than European bees. Standard interval mapping and multiple QTL models were used to analyze data. One possible QTL was identified with a significant effect on tendency to sting (LOD 3.57). Four other suggestive QTLs were also observed (about LOD 1.5). Possible QTLs also were identified that affect body size and were unlinked to defensive-behavior QTLs. Two of these were significant (LOD 3.54 and 5.15).


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 855-865 ◽  
Author(s):  
Chen-Hung Kao

AbstractThe differences between maximum-likelihood (ML) and regression (REG) interval mapping in the analysis of quantitative trait loci (QTL) are investigated analytically and numerically by simulation. The analytical investigation is based on the comparison of the solution sets of the ML and REG methods in the estimation of QTL parameters. Their differences are found to relate to the similarity between the conditional posterior and conditional probabilities of QTL genotypes and depend on several factors, such as the proportion of variance explained by QTL, relative QTL position in an interval, interval size, difference between the sizes of QTL, epistasis, and linkage between QTL. The differences in mean squared error (MSE) of the estimates, likelihood-ratio test (LRT) statistics in testing parameters, and power of QTL detection between the two methods become larger as (1) the proportion of variance explained by QTL becomes higher, (2) the QTL locations are positioned toward the middle of intervals, (3) the QTL are located in wider marker intervals, (4) epistasis between QTL is stronger, (5) the difference between QTL effects becomes larger, and (6) the positions of QTL get closer in QTL mapping. The REG method is biased in the estimation of the proportion of variance explained by QTL, and it may have a serious problem in detecting closely linked QTL when compared to the ML method. In general, the differences between the two methods may be minor, but can be significant when QTL interact or are closely linked. The ML method tends to be more powerful and to give estimates with smaller MSEs and larger LRT statistics. This implies that ML interval mapping can be more accurate, precise, and powerful than REG interval mapping. The REG method is faster in computation, especially when the number of QTL considered in the model is large. Recognizing the factors affecting the differences between REG and ML interval mapping can help an efficient strategy, using both methods in QTL mapping to be outlined.


Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 297-303 ◽  
Author(s):  
Wei-Ren Wu ◽  
Wei-Ming Li ◽  
Ding-Zhong Tang ◽  
Hao-Ran Lu ◽  
A J Worland

Abstract Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the development of tiller number in rice. A recombinant inbred population and a corresponding saturated molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5 days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes 1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during active tillering stage, while the other two QTL achieved this either before or after the active tillering stage.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1373-1388
Author(s):  
Mikko J Sillanpää ◽  
Elja Arjas

Abstract A novel fine structure mapping method for quantitative traits is presented. It is based on Bayesian modeling and inference, treating the number of quantitative trait loci (QTLs) as an unobserved random variable and using ideas similar to composite interval mapping to account for the effects of QTLs in other chromosomes. The method is introduced for inbred lines and it can be applied also in situations involving frequent missing genotypes. We propose that two new probabilistic measures be used to summarize the results from the statistical analysis: (1) the (posterior) QTL-intensity, for estimating the number of QTLs in a chromosome and for localizing them into some particular chromosomal regions, and (2) the location wise (posterior) distributions of the phenotypic effects of the QTLs. Both these measures will be viewed as functions of the putative QTL locus, over the marker range in the linkage group. The method is tested and compared with standard interval and composite interval mapping techniques by using simulated backcross progeny data. It is implemented as a software package. Its initial version is freely available for research purposes under the name Multimapper at URL http://www.rni.helsinki.fi/~mjs.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1547-1555 ◽  
Author(s):  
Wouter Coppieters ◽  
Alexandre Kvasz ◽  
Frédéric Farnir ◽  
Juan-Jose Arranz ◽  
Bernard Grisart ◽  
...  

Abstract We describe the development of a multipoint nonparametric quantitative trait loci mapping method based on the Wilcoxon rank-sum test applicable to outbred half-sib pedigrees. The method has been evaluated on a simulated dataset and its efficiency compared with interval mapping by using regression. It was shown that the rank-based approach is slightly inferior to regression when the residual variance is homoscedastic normal; however, in three out of four other scenarios envisaged, i.e., residual variance heteroscedastic normal, homoscedastic skewed, and homoscedastic positively kurtosed, the latter outperforms the former one. Both methods were applied to a real data set analyzing the effect of bovine chromosome 6 on milk yield and composition by using a 125-cM map comprising 15 microsatellites and a granddaughter design counting 1158 Holstein-Friesian sires.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1489-1506
Author(s):  
Kathleen D Jermstad ◽  
Daniel L Bassoni ◽  
Keith S Jech ◽  
Gary A Ritchie ◽  
Nicholas C Wheeler ◽  
...  

Abstract Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring temperatures. A three-generation mapping population of 460 cloned progeny was used for genetic mapping and phenotypic evaluations. An all-marker interval mapping method was used for scanning the genome for the presence of QTL and single-factor ANOVA was used for estimating QTL-by-environment interactions. A modest number of QTL were detected per trait, with individual QTL explaining up to 9.5% of the phenotypic variation. Two QTL-by-treatment interactions were found for growth initiation, whereas several QTL-by-treatment interactions were detected among growth cessation traits. This is the first report of QTL interactions with specific environmental signals in forest trees and will assist in the identification of candidate genes controlling these important adaptive traits in perennial plants.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 905-914 ◽  
Author(s):  
Hakkyo Lee ◽  
Jack C M Dekkers ◽  
M Soller ◽  
Massoud Malek ◽  
Rohan L Fernando ◽  
...  

Abstract Controlling the false discovery rate (FDR) has been proposed as an alternative to controlling the genomewise error rate (GWER) for detecting quantitative trait loci (QTL) in genome scans. The objective here was to implement FDR in the context of regression interval mapping for multiple traits. Data on five traits from an F2 swine breed cross were used. FDR was implemented using tests at every 1 cM (FDR1) and using tests with the highest test statistic for each marker interval (FDRm). For the latter, a method was developed to predict comparison-wise error rates. At low error rates, FDR1 behaved erratically; FDRm was more stable but gave similar significance thresholds and number of QTL detected. At the same error rate, methods to control FDR gave less stringent significance thresholds and more QTL detected than methods to control GWER. Although testing across traits had limited impact on FDR, single-trait testing was recommended because there is no theoretical reason to pool tests across traits for FDR. FDR based on FDRm was recommended for QTL detection in interval mapping because it provides significance tests that are meaningful, yet not overly stringent, such that a more complete picture of QTL is revealed.


Sign in / Sign up

Export Citation Format

Share Document