growth cessation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
James Gacheru Wanjiku ◽  
Heike Bohne

Prunus spinosa species is distributed across wide range of geographical areas which are subject to climatic, edaphic factors and long-term divergent selection. This could lead to local adaptation hence ecotypes in terms of morphological, physiologically and or biochemical inclination to their local environment. To investigate whether the species (Prunus spinosa) has been influenced by their local environmental conditions and whether populations (ecotypes) are adapted to local conditions, cuttings from different demarcated areas of origin in Germany and Italy were sourced and cultivated optimally in common container area. Growth, bud sprout and bud set were evaluated in spring, summer and autumn respectively. Soluble sugars (Glucose, fructose, sucrose and starch), N, P, K, and proline concentrations were analysed in spring and autumn for three years. The findings indicated that plants grown from different locations mostly differed in N, P, K, soluble sugars and starch in spring. Nonetheless, these geographic variations were hardly observed either in summer or in autumn. On phenology, German populations did not differ at all in phenology (flushing and growth cessation) while the Italian population always sprouted earlier and ceased growth later. The results indicate that the German populations are not differentiated by climatic variations across latitude or altitude. In contrast the Italian population is differentiated from German population Brandenburg mostly by latitudinal differentiation. Nevertheless, their inherent ability to sprout earlier and late  growth cessation might expose the population to frequent frost damage when transplanted to more northern latitude.


2021 ◽  
pp. 105566562110026
Author(s):  
Anna M. Hardin ◽  
Ryan P. Knigge ◽  
Hee Soo Oh ◽  
Manish Valiathan ◽  
Dana L. Duren ◽  
...  

Objective: To identify differences between asymptote- and rate-based methods for estimating age and size at growth cessation in linear craniofacial measurements. Design: This is a retrospective, longitudinal study. Five linear measurements were collected from lateral cephalograms as part of the Craniofacial Growth Consortium Study (CGCS). Four estimates of growth cessation, including 2 asymptote- (GCasym, GCerr) and 2 rate-based (GCabs, GC10%) methods, from double logistic models of craniofacial growth were compared. Participants: Cephalometric data from participants in 6 historic longitudinal growth studies were included in the CGCS. At least 1749 individuals (870 females, 879 males), unaffected by craniofacial anomalies, were included in all analyses. Individuals were represented by a median of 11 images between 2.5 and 31.3 years of age. Results: GCasym consistently occurred before GCerr and GCabs consistently occurred before GC10% within the rate-based approaches. The ordering of the asymptote-based methods compared to the rate-based methods was not consistent across measurements or between males and females. Across the 5 measurements, age at growth cessation ranged from 13.56 (females, nasion-basion, GCasym) to 24.39 (males, sella-gonion, GCerr). Conclusions: Adolescent growth cessation is an important milestone for treatment planning. Based on our findings, we recommend careful consideration of specific definitions of growth cessation in both clinical and research settings since the most appropriate estimation method may differ according to patients’ needs. The different methods presented here provide useful estimates of growth cessation that can be applied to raw data and to a variety of statistical models of craniofacial growth.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ákos Boldizsár ◽  
Alexandra Soltész ◽  
Karen Tanino ◽  
Balázs Kalapos ◽  
Zsuzsa Marozsán-Tóth ◽  
...  

Abstract Background Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions. Results Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The ‘Okanese’ hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The ‘Walker’ cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of ‘Okanese’. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in ‘Walker’, peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in ‘Okanese’ compared to ‘Walker’. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in ‘Okanese’. Conclusions Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.


2021 ◽  
Author(s):  
Ákos Boldizsár ◽  
Alexandra Soltész ◽  
Karen Tanino ◽  
Balázs Kalapos ◽  
Zsuzsa Marozsán-Tóth ◽  
...  

Abstract Background Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions.Results Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The ‘Okanese’ hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The ‘Walker’ cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of ‘Okanese’. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in ‘Walker’, peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in ‘Okanese’ compared to ‘Walker’. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in ‘Okanese’.Conclusions Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.


Silva Fennica ◽  
2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Matti Haapanen ◽  
Seppo Ruotsalainen

Our main objective was to determine whether various genetically improved reproductive materials of Scots pine ( L.) differ in growth rhythm, autumn cold acclimation and resilience from unimproved materials. The study consisted of two successive indoor experiments with Scots pine seedlings representing four levels of genetic gain (unimproved natural stands, first-generation seed orchards, 1.5-generation seed orchards and seed orchards established with freezing-tested parents) and a wide range of geographical origins within Finland. The seedlings were assessed for terminal shoot elongation, growth cessation, bud set, freezing injuries and bud flushing over the first growth period. All the adaptive traits showed a latitudinal trend regardless of the genetic level. Seed orchard progenies and natural stand progenies did not differ significantly in the timing of growth cessation, bud set, and the flushing rate of the frost-injured seedlings, after the trait variation was adjusted to the latitude of origin. The differences in autumn frost hardiness were insignificant, too, except for the somewhat higher injury rate displayed by the first-generation seed orchard materials. The finding was not conclusive due to ambiguous results from the two experiments. Overall, we did not find evidence of alarming compromises in the adaptive performance of genetically improved materials.Pinus sylvestris


Author(s):  
Xianliang Zhang ◽  
Xue Li ◽  
Rubén D. Manzanedo ◽  
Loïc D'Orangeville ◽  
Pengcheng Lv ◽  
...  

2020 ◽  
Author(s):  
Ákos Boldizsár ◽  
Alexandra Soltész ◽  
Karen Tanino ◽  
Balázs Kalapos ◽  
Zsuzsa Marozsán-Tóth ◽  
...  

Abstract BackgroundOver the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions.ResultsGrowth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The ‘Okanese’ hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The ‘Walker’ cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of ‘Okanese’. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in ‘Walker’, peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in ‘Okanese’ compared to ‘Walker’. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in ‘Okanese’.ConclusionsOur results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.


2020 ◽  
Author(s):  
Ákos Boldizsár ◽  
Alexandra Soltész ◽  
Karen Tanino ◽  
Balázs Kalapos ◽  
Zsuzsa Marozsán-Tóth ◽  
...  

Abstract Background Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied.Results Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The ‘Okanese’ hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The ‘Walker’ cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of ‘Okanese’. Besides, in the leaves of the two cultivars, PtDAM1 was not expressed while the CBFs expression pattern was reversed. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in ‘Okanese’ compared to ‘Walker’. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in ‘Okanese’.Conclusions Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.


Sign in / Sign up

Export Citation Format

Share Document