growth initiation
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Iván J. Velázquez-Castro ◽  
◽  
Arnulfo Aldrete ◽  
Javier López-Upton ◽  
Miguel Á. López-López ◽  
...  

Introduction: Genetic improvement and nutritional management are used to increase productive capacity. Objective: To analyze the effect of traditional and controlled-release fertilizers, as well as the way to define the doses (technically or empirically), on growth of 20 tree families of Pinus patulaSchiede ex Schltdl. & Cham. Materials and methods: Four fertilization treatments were applied: 1) control; 2) “technical”, based on foliar analysis; 3) controlled release (18-6-12 + 2CaO + 3.5 Mg + 2.1 Si + microelements); and 4) mixture of agricultural fertilizers in nutrient concentrations similar to the controlled-release treatment. Height, diameter, biomass index, number of whorls, leaf mass, and growth initiation and cessation were evaluated in a group of 10 superior and 10 inferior three-year old families in Chignahuapan, Puebla. Data were analyzed with the MIXED procedure of SAS. Results and discussion: Trees showed no significant differences in growth, biomass production and growth initiation by fertilization effect, but showed significant differences by genetic quality (P ≤ 0.05). The genotype*fertilization interaction was significant; after one year of controlled-release fertilizer application, inferior genotypes had the highest values of relative rates of biomass production, diameter at root collar and height. Conclusions: Controlled-release fertilizers at appropriate doses and environmental conditions are a viable option to promote growth of young P. patula trees in the field.


Author(s):  
Simon Escobar Steinvall ◽  
Elias Z. Stutz ◽  
Rajrupa Paul ◽  
Mahdi Zamani ◽  
Jean-Baptiste Leran ◽  
...  

Author(s):  
K. S. Vishwanath

The FRP laminates are widely implemented in aviation industry due to its advantages and applications other materials in terms of strength to weight ratio, design features and many more. The strength of the interface compared to longitudinal and lateral directions of the plies are comparatively less and give rise too poor transverse direction strength. Hence a failure mechanism called delamination will occur in case when tools are dropped or due to poor manufacturing which would give rise to interface delamination. In this paper, VCCT is employed at the interface between base and sub laminate to investigate for a circular shape delamination geometry of 60mm buckling driven delamination growth with variations in temperature for -20C, room temperature, 523C, 773C and 1273C. The computational prediction of delamination growth initiation is obtained by solving a CFRP specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate versus inplane strains and inplane loads versus compressive strains.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength to weight ratio, manufacturing flexibility and so on. But in the transverse direction, strength is comparatively less so that a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of thrust to weight ratio, strength to weight ratio, manufacturing benefits such as tailoring, resistance to erosion and corrosion and so on. In the transverse direction, strength, stiffness and stability are comparatively less so that a failure mechanism called interface delamination comes into picture due to poor manufacturing or when tools are dropped that would create an impact load. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm square embedded buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates are widely implemented in aviation industry due to its advantages and applications other materials in terms of strength to weight ratio, dsign features and many more. The strength of the interface compared to longitudinal and lateral directions of the plies are comparatively less and give rise too poor transverse direction strength. Hence a failure mechanism called delamination will occur in case when tools are dropped or due to poor manufacturing which would give rise to interface delamination. In this paper, VCCT is employed at the interface between base and sub laminate to investigate for a square shape delamination geometry of 20mm buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a T300/976 specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate at the delamination geometry.


Author(s):  
K. S. Vishwanath

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength, stiffness, stability, weight saving features, resistance to corrosion and erosion and many more. But due to poor transverse direction strength, a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped which would make an impact. In this paper, VCCT is implemented at the interface between base and sub laminate to investigate for 20mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a T300/976 specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate at the edge of delamination geometry.


2021 ◽  
Vol 15 (5) ◽  
pp. 2401-2413
Author(s):  
Iman E. Gharamti ◽  
John P. Dempsey ◽  
Arttu Polojärvi ◽  
Jukka Tuhkuri

Abstract. This work addresses the time-dependent response of 3 m×6 m floating edge-cracked rectangular plates of columnar freshwater S2 ice by conducting load control (LC) mode I fracture tests in the Aalto Ice Tank of Aalto University. The thickness of the ice plates was about 0.4 m and the temperature at the top surface about −0.3 ∘C. The loading was applied in the direction normal to the columnar grains and consisted of creep/cyclic-recovery sequences followed by a monotonic ramp to fracture. The LC test results were compared with previous monotonically loaded displacement control (DC) experiments of the same ice, and the effect of creep and cyclic sequences on the fracture properties were discussed. To characterize the nonlinear displacement–load relation, Schapery's constitutive model of nonlinear thermodynamics was applied to analyze the experimental data. A numerical optimization procedure using Nelder–Mead's (N-M) method was implemented to evaluate the model functions by matching the displacement record generated by the model and measured by the experiment. The accuracy of the constitutive model is checked and validated against the experimental response at the crack mouth. Under the testing conditions, the creep phases were dominated by a steady phase, and the ice response was overall elastic–viscoplastic; no significant viscoelasticity or major recovery was detected. In addition, there was no clear effect of the creep loading on the fracture properties at crack growth initiation: the failure load and crack opening displacements.


2021 ◽  
Vol 39 (3) ◽  
pp. 032402
Author(s):  
Wanxing Xu ◽  
Paul C. Lemaire ◽  
Kashish Sharma ◽  
Ryan J. Gasvoda ◽  
Dennis M. Hausmann ◽  
...  

2021 ◽  
Vol 118 (10) ◽  
pp. e2016900118
Author(s):  
Ian R. MacLachlan ◽  
Tegan K. McDonald ◽  
Brandon M. Lind ◽  
Loren H. Rieseberg ◽  
Sam Yeaman ◽  
...  

Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.


Sign in / Sign up

Export Citation Format

Share Document