multiple trait
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 79)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
J. Christopher D. Terry ◽  
Jacob D. O’Sullivan ◽  
Axel G. Rossberg

AbstractAlthough there is some evidence that larger species could be more prone to population declines, the potential role of size traits in determining changes in community composition has been underexplored in global-scale analyses. Here, we combine a large cross-taxon assemblage time series database (BioTIME) with multiple trait databases to show that there is no clear correlation within communities between size traits and changes in abundance over time, suggesting that there is no consistent tendency for larger species to be doing proportionally better or worse than smaller species at local scales.


Author(s):  
M Bermann ◽  
D Lourenco ◽  
I Misztal

Abstract The objectives of this study were to develop an efficient algorithm for calculating prediction error variances (PEV) for GBLUP models using the Algorithm for Proven and Young (APY), extend it to single-step GBLUP (ssGBLUP), and to apply this algorithm for approximating the theoretical reliabilities for single and multiple trait models in ssGBLUP. The PEV with APY was calculated by block-sparse inversion, efficiently exploiting the sparse structure of the inverse of the genomic relationship matrix with APY. Single-step GBLUP reliabilities were approximated by combining reliabilities with and without genomic information in terms of effective record contributions. Multi-trait reliabilities relied on single-trait results adjusted using the genetic and residual covariance matrices among traits. Tests involved two datasets provided by the American Angus Association. A small dataset (Data1) was used for comparing the approximated reliabilities with the reliabilities obtained by the inversion of the left-hand side of the mixed model equations. The large dataset (Data2) was used for evaluating the computational performance of the algorithm. Analyses with both datasets used single-trait and three-trait models. The number of animals in the pedigree ranged from 167,951 in Data1 to 10,213,401 in Data2, with 50,000 and 20,000 genotyped animals for single-trait and multiple trait-analysis, respectively, in Data1 and 335,325 in Data2. Correlations between estimated and exact reliabilities obtained by inversion ranged from 0.97 to 0.99, whereas the intercept and slope of the regression of the exact on the approximated reliabilities ranged from 0.00 to 0.04 and from 0.93 to 1.05, respectively. For the three-trait model with the largest dataset (Data2), the elapsed time for the reliability estimation was eleven minutes. The computational complexity of the proposed algorithm increased linearly with the number of genotyped animals and with the number of traits in the model. This algorithm can efficiently approximate the theoretical reliability of genomic estimated breeding values in ssGBLUP with APY for large numbers of genotyped animals at a low cost.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Jack C. M. Dekkers

Abstract Background Genotype-by-environment interactions for a trait can be modeled using multiple-trait, i.e. character-state, models, that consider the phenotype as a different trait in each environment, or using reaction norm models based on a functional relationship, usually linear, between phenotype and a quantitative measure of the quality of the environment. The equivalence between character-state and reaction norm models has been demonstrated for a single trait. The objectives of this study were to extend the equivalence of the reaction norm and character-state models to a multiple-trait setting and to both genetic and environmental effects, and to illustrate the application of this equivalence to the design and optimization of breeding programs for disease resilience. Methods Equivalencies between reaction norm and character-state models for multiple-trait phenotypes were derived at the genetic and environmental levels, which demonstrates how multiple-trait reaction norm parameters can be derived from multiple-trait character state parameters. Methods were applied to optimize selection for a multiple-trait breeding goal in a target environment based on phenotypes collected in a healthy and disease-challenged environment, and to optimize the environment in which disease-challenge phenotypes should be collected. Results and conclusions The equivalence between multiple-trait reaction norm and multiple-trait character-state parameters allow genetic improvement for a multiple-trait breeding goal in a target environment to be optimized without recording phenotypes and estimating parameters for the target environment.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Rostam Abdollahi-Arpanahi ◽  
Daniela Lourenco ◽  
Andres Legarra ◽  
Ignacy Misztal

Abstract Background Understanding whether genomic selection has been effective in livestock and when the results of genomic selection became visible are essential questions which we have addressed in this paper. Three criteria were used to identify practices of breeding programs over time: (1) the point of divergence of estimated genetic trends based on pedigree-based best linear unbiased prediction (BLUP) versus single-step genomic BLUP (ssGBLUP), (2) the point of divergence of realized Mendelian sampling (RMS) trends based on BLUP and ssGBLUP, and (3) the partition of genetic trends into that contributed by genotyped and non-genotyped individuals and by males and females. Methods We used data on 282,035 animals from a commercial maternal line of pigs, of which 32,856 were genotyped for 36,612 single nucleotide polymorphisms (SNPs) after quality control. Phenotypic data included 228,427, 101,225, and 11,444 records for birth weight, average daily gain in the nursery, and feed intake, respectively. Breeding values were predicted in a multiple-trait framework using BLUP and ssGBLUP. Results The points of divergence of the genetic and RMS trends estimated by BLUP and ssGBLUP indicated that genomic selection effectively started in 2019. Partitioning the overall genetic trends into that for genotyped and non-genotyped individuals revealed that the contribution of genotyped animals to the overall genetic trend increased rapidly from ~ 74% in 2016 to 90% in 2019. The contribution of the female pathway to the genetic trend also increased since genomic selection was implemented in this pig population, which reflects the changes in the genotyping strategy in recent years. Conclusions Our results show that an assessment of breeding program practices can be done based on the point of divergence of genetic and RMS trends between BLUP and ssGBLUP and based on the partitioning of the genetic trend into contributions from different selection pathways. However, it should be noted that genetic trends can diverge before the onset of genomic selection if superior animals are genotyped retroactively. For the pig population example, the results showed that genomic selection was effective in this population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Subhadra Chakrabarty ◽  
Natalja Kravcov ◽  
André Schaffasz ◽  
Rod J. Snowdon ◽  
Benjamin Wittkop ◽  
...  

Enhancements in reproductive cold tolerance of sorghum are essential to expand growing areas into both high-latitude temperate areas and tropical high-altitude environments. Here we present first insights into the genetic architecture of this trait via genome-wide association studies in a broad genetic diversity set (n = 330) phenotyped in multi-location field trials including high-altitude tropical (Mexico) and high-latitude temperate (Germany) environments. We observed a high degree of phenotypic variation and identified several novel, temperate-adapted accessions with superior and environmentally stable cold tolerance. Good heritability indicates strong potential for implementation of reproductive cold tolerance in breeding. Although the trait was found to be strongly quantitative, promising genomic regions with multiple-trait associations were found, including hotspots on chromosomes 3 and 10 which contain candidate genes implicated in different developmental and survival processes under abiotic stress conditions.


Author(s):  
M N Boareki ◽  
F S Schenkel ◽  
O Willoughby ◽  
A Suarez-Vega ◽  
D Kennedy ◽  
...  

Abstract Fecal egg count (FEC) is an indicative measurement for parasite infection in sheep. Different FEC methods may show inconsistent results. Not accounting for inconsistencies can be problematic when integrating measurements from different FEC methods for genetic evaluation. The objectives of this study were to evaluate the difference in means and variances between two fecal egg counting methods used in sheep, the Modified McMaster (LMMR) and the Triple Chamber McMaster (LTCM); to estimate variance components for the two FEC methods, treating them as two different traits; and to integrate FEC data from the two different methods and estimate genetic parameters for FEC and other gastrointestinal parasite resistance traits. Fecal samples were collected from a commercial Rideau-Arcott sheep farm in Ontario. Fecal egg counting was performed using both Modified McMaster and the Triple Chamber McMaster methods. Other parasite resistance trait records were collected from the same farm including eye score (FAMACHA ©), body condition score (BCS), and body weight (WT). The two FEC methods were highly genetically (0.94) and phenotypically (0.88) correlated. However, the mean and variance between the two FEC methods were significantly different (P < 0.0001). Therefore, re-scaling is required prior to integrating data from the different methods. For the multiple trait analysis, data from the two fecal egg counting methods were integrated (LFEC) by using records for the LMMR when available and replacing missing records with re-standardized LTCM records converted to the same mean and variance of LMMR. Heritability estimates were 0.12 ± 0.04, 0.07 ± 0.05 , 0.17 ± 0.06, and 0.24 ± 0.07 for LFEC egg count, FAMACHA ©, BCS, and WT, respectively. The estimated genetic correlations between fecal egg count and the other parasite resistance traits were low and not significant (P>0.05) for FAMACHA © (r= 0.24 ± 0.32) and WT (r= 0.22 ± 0.19), and essentially zero for BCS (r= -0.03 ± 0.25), suggesting little to no benefit of using such traits as indicators for LFEC.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259456
Author(s):  
Md Nafis Ul Alam ◽  
G. M. Nurnabi Azad Jewel ◽  
Tomalika Azim ◽  
Zeba I. Seraj

Farmland is on the decline and worldwide food security is at risk. Rice is the staple of choice for over half the Earth’s people. To sustain current demands and ascertain a food secure future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop improvement, a broader understanding of polygenic traits like stress tolerance and crop yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varieties must be traced back to their genetic roots. In this study, we separately assayed 11 phenotypes in a panel of 176 diverse accessions predominantly comprised of local landraces from Bangladesh. We compiled high resolution sequence data for these accessions. We collectively studied the ties between the observed phenotypic differences and the examined additive genetic effects underlying these variations. We applied a fixed effect model to associate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to known genes. Our explorations yielded 13 QTLs related to various traits in multiple trait classes. 10 identified QTLs were equivalent to findings from previous studies. Integrative analysis assumes potential novel functionality for a number of candidate genes. These findings will usher novel avenues for the bioengineering of high yielding crops of the future fortified with genetic defenses against abiotic stressors.


2021 ◽  
Vol 914 (1) ◽  
pp. 012004
Author(s):  
N K Kartikawati ◽  
A Nirsatmanto ◽  
A Rimbawanto ◽  
Sumardi ◽  
Prastyono

Abstract Melaleuca cajuputi breeding in Indonesia is entering the advanced generation cycle and improvements have been achieved for oil concentration and 1.8 cineole-content. In commercial plantations, the total oil yield is an important factor to ensure the sustainability and continuity of oil production. This variable is calculated based on oil concentration, survival rate, and leaf biomass. However, to date, biomass productivity is maintained through silviculture practices rather than genetics. Therefore, genetic improvement for other traits related to leaf biomass is necessary. This study aimed to optimize the breeding strategy of M. cajuputi for a multiple-trait selection using the economic weight of traits related to oil yield. The economic weight was derived by combining selection results in the past generation breeding population and the assessment in genetic gain trials. The study revealed that leaf biomass should be prioritized as selection criteria for oil concentration in the advanced generation breeding based on the current baseline of the achieved gain. The implication of the economic weight to further generation breeding selection for improving oil yield productivity is that the major traits affecting the oil yield should be incorporated simultaneously for selection in the breeding strategy of M. cajuputi. The leaves biomass could be more weighted than other traits in constructing the index for the multiple-trait selection considering the correlation among the three traits observed.


Author(s):  
Natalia S Forneris ◽  
Carolina A Garcia-Baccino ◽  
Rodolfo J C Cantet ◽  
Zulma G Vitezica

Abstract Inbreeding depression reduces mean phenotypic value of important traits in livestock populations. The goal of this work was to estimate the level of inbreeding and inbreeding depression for growth and reproductive traits in Argentinean Brangus cattle, in order to obtain a diagnosis and monitor breed management. Data comprised 359,257 (from which 1,990 were genotyped for 40,678 SNP) animals with phenotypic records for at least one of three growth traits: birth weight (BW), weaning weight (WW) and finishing weight (FW). For scrotal circumference (SC), 52,399 phenotypic records (of which 256 had genotype) were available. There were 530,938 animals in pedigree. Three methods to estimate inbreeding coefficients were used. Pedigree-based inbreeding coefficients were estimated accounting for missing parents. Inbreeding coefficients combining genotyped and nongenotyped animal information were also computed from matrix H of the single-step approach. Genomic inbreeding coefficients were estimated using homozygous segments obtained from a Hidden Markov model (HMM) approach. Inbreeding depression was estimated from the regression of the phenotype on inbreeding coefficients in a multiple-trait mixed model framework, either for the whole data set or the data set of genotyped animals. All traits were unfavorably affected by inbreeding depression. A 10% increase in pedigree-based or combined inbreeding would result in a reduction of 0.34 - 0.39 kg in BW, of 2.77 - 3.28 kg in WW and 0.23 cm in SC. For FW a 10% increase in pedigree-based, genomic or combined inbreeding would result in a decrease of 8.05 - 11.57 kg. Genomic inbreeding based on the HMM was able to capture inbreeding depression, even in such a compressed genotyped data set.


Sign in / Sign up

Export Citation Format

Share Document