scholarly journals Mapping Fruit Susceptibility to Postharvest Physiological Disorders and Decay Using a Collection of Near-isogenic Lines of Melon

2007 ◽  
Vol 132 (5) ◽  
pp. 739-748 ◽  
Author(s):  
Juan Pablo Fernández-Trujillo ◽  
Javier Obando ◽  
Juan Antonio Martínez ◽  
Antonio Luis Alarcón ◽  
Iban Eduardo ◽  
...  

Melon (Cucumis melo L.) is a perishable fruit that requires refrigeration to extend its shelf life. Postharvest behavior differs substantially among melon varieties due to genetic differences. In this work, we use a collection of near-isogenic lines (NILs) derived from a cross between the Spanish cultivar Piel de Sapo (PS) and an exotic Korean accession ‘Shongwan Charmi’ [SC (PI161375)], each of them with a single introgressed region from SC into the PS background, to detect and map quantitative trait loci (QTLs) involved in postharvest life traits, such as total losses, water-soaking, necrosis of the placental tissue, chilling injury (CI), decay, fruit over-ripening, flesh browning, hollow flesh disorder, and flavor loss during storage. Fruit were examined at harvest and after 35 days at 8 °C. Three QTLs induced desirable quality traits: flv4.1 reduced the loss of fruit flavor after refrigeration, tl8.1 reduced total losses, and fus8.4 reduced the susceptibility to fusarium rot (Fusarium Link). Another 11 QTLs produced a detrimental effect on other quality traits. The NIL population was useful for dissecting complex, difficult-to-measure pre- and postharvest disorder traits of different degrees of development and for investigating flavor loss during storage. Further studies with the QTLs described herein will shed light on the genetic control of melon shelf life and help breeders who are interested in this fruit quality trait.

2007 ◽  
pp. 309-317
Author(s):  
J. Obando ◽  
J.A. Martínez ◽  
M.J. Roca ◽  
A. Alarcón ◽  
J.P. Fernández-Trujillo ◽  
...  

2016 ◽  
Vol 96 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Xiaomao Cheng ◽  
Shu Xia ◽  
Xihua Zeng ◽  
Jianxun Gu ◽  
Yuan Yang ◽  
...  

Seed oil content is a key seed quality trait determining the economic value of rapeseed (Brassica napus L.). However, it is a complex quantitative trait controlled by multiple genes. To this point, its genetic mechanism in rapeseed remains to be revealed. In the present study, we separately identified the quantitative trait loci (QTL) controlling seed oil content of B. napus using three generations of recombinant inbred line (RIL) populations (F4:5, F5:6, and F6:7) derived from a cross of two contrasting parents (M201, a high-oil parent, and M202, a low-oil parent) in four trials. The results indicated that the additive effects may be the primary factors contributing to the variation in seed oil content in B. napus. A total of 15 QTL for seed oil content were mapped. Two of them, namely qOC-A9-3 and qOC-A10, were consistently detected across two and all four environments, respectively. Meanwhile, qOC-A10 showed a large effect on phenotypic variation in seed oil content. The stability and significance of qOC-A10 was also validated in the near isogenic lines (NILs-qOC-A10) developed from the RIL population (F4:5) using marker-assisted selection. The qOC-A10 is of particular interest for further fine mapping and map-based cloning.


Euphytica ◽  
2020 ◽  
Vol 216 (8) ◽  
Author(s):  
Melisa Di Giacomo ◽  
Marianela Dana Luciani ◽  
Vladimir Cambiaso ◽  
Roxana Zorzoli ◽  
Gustavo Rubén Rodríguez ◽  
...  

2009 ◽  
Vol 27 (4) ◽  
pp. 505-514
Author(s):  
Juan Antonio Martínez ◽  
Mohammad-Madi Jowkar ◽  
Javier Mauricio Obando-Ulloa ◽  
Plácido Varó ◽  
Eduard Moreno ◽  
...  

Postharvest disorders and rots can produce important economic losses in fruits stored for long time for exportation. The genetic and physiological basis of some disorders in melon (Cucumis melo L.) are unknown and particularly the possible relation with climacteric behavior. A collection of melon near-isogenic lines (NILs) (SC3-5 and seven more showing climacteric and two non-climacteric ripening pattern) were analyzed to study genetic and physiological aspects of fruit disorders and rots. Two non-climacteric (Nicolás; Inodorus Group; and Shongwan Charmi PI161375, Conomon Group) and two climacteric cultivars (Fado, Reticulatus Group; Védrantais, Cantaloupensis Group) were used as reference. The field was divided in eight blocks containing one three-plant replication for each NIL, two for the parental cultivar Piel de Sapo and one or two for the reference cultivars. Replications evaluated were more than six in the cultivars studied. Plant problems included aphids, powdery mildew, and leaf wind injury. Preharvest fruit disorders included whole fruit cracking in cultivar Védrantais and NIL 5M2, and stylar-end cracking in cultivar Fado. Climacteric NILs with yellow skin were particularly affected by over-ripening, stylar-end cracking, and sunburn during cultivation. At harvest, two NILs showed slight placental tissue necrosis which was inherited from SC and were also detected after storage. Other uncommon disorders seen at harvest or 30 days after storage at 8ºC included warted skin (scarring), flesh discoloration (light brown or translucent areas), hollow flesh disorder, and deep furrow netting inherited from SC. Less common rots included grey mould, bacterial soft rot, Penicillium rot, cottony leak and internal Cladosporium rot. Stylar-end hardness below 20 N·mm-1 was associated with cracking and softening. The incidence of the disorders and rots was too low to confirm that the genetic component played a role in their development.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Nitasha Grover ◽  
Aruna Kumar ◽  
Ashutosh Kumar Yadav ◽  
S. Gopala Krishnan ◽  
Ranjith Kumar Ellur ◽  
...  

Abstract Background Direct-seeded rice (DSR) is a potential technology for sustainable rice farming as it saves water and labor. However, higher incidence of weed under DSR limits productivity. Therefore, there is a need to develop herbicide tolerant (HT) rice varieties. Results We used marker assisted backcross breeding (MABB) to transfer a mutant allele of Acetohydroxy acid synthase (AHAS) gene, which confers tolerance to imidazolinone group of herbicides from the donor parent (DP) “Robin” into the genetic background of an elite popular Basmati rice variety, Pusa Basmati 1121 (PB 1121). Foreground selection was done using the AHAS gene linked Simple Sequence Repeat (SSR) marker RM6844 and background selection was performed using 112 genome-wide SSR markers polymorphic between PB 1121 and Robin. Phenotypic selection for agronomic, Basmati grain and cooking quality traits in each generation was carried out to improve the recovery of recurrent parent phenome (RPP). Finally, a set of 12 BC4F4 near isogenic lines (NILs), with recurrent parent genome (RPG) recovery ranging from 98.66 to 99.55% were developed and evaluated. PB 1121-HT NILs namely 1979-14-7-33-99-10, 1979-14-7-33-99-15 and 1979-14-7-33-99-66 were found superior to PB 1121 in yield with comparable grain and cooking quality traits and herbicide tolerance similar to Robin. Conclusion Overall, the present study reports successful development of HT NILs in the genetic background of popular Basmati rice variety, PB 1121 by introgression of mutated AHAS allele. This is the first report on the development of HT Basmati rice. Superior NILs are being evaluated in the national Basmati trials, the release of which is likely to provide a viable option for the adoption of DSR technology in Basmati rice cultivation.


2020 ◽  
Author(s):  
Nitasha Grover ◽  
Aruna Kumar ◽  
Ashutosh Kumar Yadav ◽  
Gopala Krishnan S. ◽  
Ranjith Kumar Ellur ◽  
...  

Abstract Background Direct-seeded rice (DSR) is a potential technology for sustainable rice farming as it saves water and labor. However, higher incidence of weed under DSR limits productivity. Therefore, there is a need to develop herbicide tolerant (HT) rice varieties. Results We used marker assisted backcross breeding (MABB) to transfer a mutant allele of Acetohydroxy acid synthase ( AHAS ) gene, which confers tolerance to imidazolinone group of herbicides from the donor parent (DP) “Robin” into the genetic background of an elite popular Basmati rice variety Pusa Basmati 1121 (PB 1121). Foreground selection was done using the AHAS gene linked Simple Sequence Repeat (SSR) marker RM6844 and background selection was performed using 112 genome-wide SSR markers polymorphic between PB 1121 and Robin. Phenotypic selection for agronomic, Basmati grain and cooking quality traits in each generation was carried out to improve the recovery of recurrent parent phenome (RPP). Finally, a set of 12 BC 4 F 4 near isogenic lines (NILs), with recurrent parent genome (RPG) recovery ranging from 98.66 to 99.55% were developed and evaluated. PB 1121-HT NILs namely 1979-14-7-33-99-10, 1979-14-7-33-99-15 and 1979-14-7-33-99-66 were found superior to PB 1121 in yield with comparable grain and cooking quality traits and herbicide tolerance similar to Robin. Conclusion Overall, the present study reports successful development of HT NILs in the genetic background of popular Basmati rice variety PB 1121 by introgression of mutated AHAS allele. This is the first report on the development of HT Basmati rice. Superior NILs are being evaluated in the national Basmati trials, the release of which is likely to provide a viable option for the adoption of DSR technology in Basmati rice cultivation.


2020 ◽  
Author(s):  
Nitasha Grover ◽  
Aruna Kumar ◽  
Ashutosh Kumar Yadav ◽  
Gopala Krishnan S. ◽  
Ranjith Kumar Ellur ◽  
...  

Abstract Background Direct-seeded rice (DSR) is a potential technology for sustainable rice farming as it saves water and labor. However, higher incidence of weed under DSR limits productivity. Therefore, there is a need to develop herbicide tolerant (HT) rice varieties. Results We used marker assisted backcross breeding (MABB) to transfer a mutant allele of Acetohydroxy acid synthase (AHAS) gene, which confers tolerance to imidazolinone group of herbicides from the donor parent (DP) “Robin” into the genetic background of an elite popular Basmati rice variety Pusa Basmati 1121 (PB 1121). Foreground selection was done using the AHAS gene linked Simple Sequence Repeat (SSR) marker RM6844 and background selection was performed using 112 genome-wide SSR markers polymorphic between PB 1121 and Robin. Phenotypic selection for agronomic, Basmati grain and cooking quality traits in each generation was carried out to improve the recovery of recurrent parent phenome (RPP). Finally, a set of 12 BC4F4 near isogenic lines (NILs), with recurrent parent genome (RPG) recovery ranging from 98.66 to 99.55% were developed and evaluated. PB 1121-HT NILs namely 1979-14-7-33-99-10, 1979-14-7-33-99-15 and 1979-14-7-33-99-66 were found superior to PB 1121 in yield with comparable grain and cooking quality traits and herbicide tolerance similar to Robin. Conclusion Overall, the present study reports successful development of non-GM HT NILs in the genetic background of popular Basmati rice variety PB 1121 by introgression of mutated AHAS allele. This is the first report of the development of HT rice in India. Superior NILs are being evaluated in the national Basmati trials, the release of which is likely to provide a viable option for the adoption of DSR technology in Basmati rice cultivation.


Sign in / Sign up

Export Citation Format

Share Document