scholarly journals Methods for calculating the reliability of power supply systems

2021 ◽  
Vol 25 (1) ◽  
pp. 57-65
Author(s):  
A. S. Lukovenko ◽  
I. V. Zenkov

The aim was to determine the reliability indicators of a power supply system using an artificial neural network model. A model for calculating technical reliability was developed using the following methods: an algorithm for calculating reliability indicators of power supply systems, the method of failure rate of a power supply system and a forecasting model using artificial neural networks. It was established that a power supply system is formed by an open radial power supply circuit. The failure rate of the power supply subsystem was determined by calculating the failure rate of i-th element of the subsystem. As a result of calculating the probability of failure-free operation of the subsystem for various conditions (5 time intervals), it was found that with an increase in the operating time from 100 to 500 h, a linear increase in the rate of system failures occurs from 0.0051 to 0.0073 1/h. A comparison of the obtained mean-to-failure values of the main and the same backup subsystem in the unloaded mode with an absolutely reliable switch (269.62 h) with the main and the same backup subsystem in the loaded mode (202.21 h) was carried out. The results differ by 67.41 h, which indicates a higher degree of reliability of the first method. The software package Prognoz_INS_2020 was developed. An acceptable accuracy of no more than 2.17% was obtained by comparing the results of the conventional calculation of the failure rate of power supply systems and using the Prognoz_INS_2020 software package. This indicates the efficiency of the proposed software package in reliability calculations at operating energy enterprises. The proposed methods for assessing technical reliability both using the conventional model and a model based on an artificial neural network made it possible to assess the state of power supply systems, which helps to prevent dangerous emergencies. 

2021 ◽  
pp. 59-63
Author(s):  
T. D. Gladkikh ◽  

This paper presents power supply systems reliability models of oil production facilities. There are two types of electrical complexes: an electrical network with a consumer sensitive to voltage dips and an electrical network with a consumer with technological redundancy. A comprehensive analysis of the power supply system and the power consumer allowed us to clarify the reliability indicators and determine the direction of improving the power supply reliability to oil and associated petroleum gas production facilities


2018 ◽  
Vol 245 ◽  
pp. 06007 ◽  
Author(s):  
Valery Vanin ◽  
Alexandr Bulychov ◽  
Maxim Popov ◽  
Olga Vasilyeva ◽  
Maria Shakhova

The use of frequency-controlled electric drives in industry and municipal services is accompanied by the problem of their negative impact on the distribution network. As examples, the results of measurements of power quality indices in the power supply system of an oil producing enterprise and on the supply input of a railway traction substation are given. It is shown that the voltage subgroup total harmonic distortions (THDS) can exceed their rated permitted values in 100% of the measurement time.


Author(s):  
Aleksey M. BEZNYAKOV ◽  
Aleksey V. NEMIROV ◽  
Gennadiy B. STEGANOV

The paper discusses transmission, reception, conversion and consumption of energy of laser and microwave radiation from Earth or space power plants. It proposes a classification of advanced systems for remote supply of power to spacecraft (SC). It addresses practicability of using remote power supply to SC under various operational conditions. The paper formulates the problem of evaluating the capability of the existing SC power supply systems to receive and convert emissions from additional sources. An analysis of criteria for the quality of pulsed or rapidly varying flow of energy into a SC power supply system. It reviews the structures of typical channels of power consumption in a SC power supply system. An equivalent circuit replacing receivers of pulsed or rapidly changing radiation is described. A math model is proposed for a power consumption channel operating under conditions of intermittent power supply to photovoltaic converters. Math modeling results are presented and analyzed. Key words: space power plant, solar array, onboard power supply system, power consumption channel, voltage converters.


2017 ◽  
Vol 128 ◽  
pp. 248-254 ◽  
Author(s):  
Asset Khabdullin ◽  
Zauresh Khabdullina ◽  
Guldana Khabdullina ◽  
Sergey Tsyruk

Sign in / Sign up

Export Citation Format

Share Document