scholarly journals Increasing sensitivity of control moment gyroscope electric drive when operating at low rotational velocities

Author(s):  
D.O. Yakimovsky ◽  
◽  
D.S. Polozhentcev ◽  
D.Y. Djukich ◽  
◽  
...  
2020 ◽  
Vol 19 (3) ◽  
pp. 31-38
Author(s):  
D. S. Polozhentcev ◽  
A. A. Davidov ◽  
M. G. Shipov ◽  
E. P. Kazakov ◽  
B. I. Malykh

The paper discusses the issues of designing a control moment gyroscope electric drive with strict requirements in terms of the accuracy of ensuring a given rotation rate of the gyro motor suspension. A brief description of the control moment gyroscope electric drive applied currently is presented and the issues of improving the electric drive characteristics are discussed. As a solution, an electric drive is proposed which operates in the mode of feedback loop using angle sensors located on the axes of the gyroscope suspension and the engine rotor. The paper describes the arrangement of the control moment gyroscopes on advanced spacecraft for Earth remote sensing and presents the analytic expressions needed to calculate the control moments that affect the spacecraft. The moments are in the projection to the coordinate system brought into coincidence with the spacecraft. The paper compares spacecraft angular velocity stabilization errors for the cases of using the conventional scheme of control moment gyroscope electric drive and the newly developed one. The presented results can be used for developing control moment gyroscope electric drives to be mounted on spacecraft of different purpose with strict requirements on ensuring operation at specified rotational velocities.


2019 ◽  
Author(s):  
Burak Akbulut ◽  
Ozan Tekinalp ◽  
Ferhat Arberkli ◽  
Kivanc Azgin

Author(s):  
Wenhao Deng ◽  
Skyler Moore ◽  
Jonathan Bush ◽  
Miles Mabey ◽  
Wenlong Zhang

In recent years, researchers from both academia and industry have worked on connected and automated vehicles and they have made great progress toward bringing them into reality. Compared to automated cars, bicycles are more affordable to daily commuters, as well as more environmentally friendly. When comparing the risk posed by autonomous vehicles to pedestrians and motorists, automated bicycles are much safer than autonomous cars, which also allows potential applications in smart cities, rehabilitation, and exercise. The biggest challenge in automating bicycles is the inherent problem of staying balanced. This paper presents a modified electric bicycle to allow real-time monitoring of the roll angles and motor-assisted steering. Stable and robust steering controllers for bicycle are designed and implemented to achieve self-balance at different forward speeds. Tests at different speeds have been conducted to verify the effectiveness of hardware development and controller design. The preliminary design using a control moment gyroscope (CMG) to achieve self-balancing at lower speeds are also presented in this work. This work can serve as a solid foundation for future study of human-robot interaction and autonomous driving.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


Sign in / Sign up

Export Citation Format

Share Document