gyroscope system
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Aviation ◽  
2021 ◽  
Vol 25 (1) ◽  
pp. 41-49
Author(s):  
Izabela Krzysztofik ◽  
Zbigniew Koruba

Missile homing precision depends mainly on the correct determination of the current angle between the Gyroscope System Axis (GSA) and the target line-of-sight (LOS). A gyroscope automatic control system shall ensure spontaneous levelling of this angle, hence, constant homing of the gyroscope system axis in on the LOS, i.e. tracking the target by the head. The available literature on the subject lacks a description of how to use the controlled gyro system in the process of guiding the missile onto the target. In this paper, the authors present the original development of an optimal control algorithm for a gyro system with a square quality indicator in conditions of interference and kinematic influence of the missile deck. A comparative analysis of the LQR with the PD regulator was made. PD regulator parameters are also selected optimally, using the Golubencev method, so that the transition process of the homing system fades over a minimal time, while simultaneously ensuring the overlapping of the gyroscope axis with the target line-of-sight. The computer simulation results have been obtained in a Matlab-Simulink environment and are presented in a graphic form.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1696
Author(s):  
Izabela Krzysztofik ◽  
Zbigniew Koruba

This paper investigates the sensitivity (resistance) of a quadcopter on-board gyroscope system for the observation and tracking of a moving ground target to changing parameters of its regulator under interference conditions. It was shown that the gain in matrix elements is most sensitive, and even their slightest deviation from optimal values can lead to reduced target tracking efficiency and even loss of control system stability. Furthermore, the authors studied the energy expenditure at various gyroscope system control parameter values, while homing a quadcopter onto a ground target. A Matlab/Simulink environment was used to conduct simulations of the controlled gyroscope system dynamics. Selected test results are shown in graphic form.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xin Ma ◽  
Yeguo Sun ◽  
Fang Zhu

Based on disturbance observer, this paper develops a nonsingular terminal sliding mode control method for uncertain chaotic gyroscope system. Firstly, fuzzy logic system (FLS) is used to estimate the unknown function; then disturbance observer (DOB) is constructed to estimate the mixed disturbance, which consists of the fuzzy estimation error, external disturbance, and dead-zone input error. Subsequently, by using a nonsingular terminal sliding mode function, the control method proposed in this paper can achieve the sliding mode variable approaching a small neighborhood of zero and reduce chattering phenomenon of the tracking error and controller. Finally, comparative simulation results confirm the effectiveness of the method proposed in this paper.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 940
Author(s):  
Jing Mi ◽  
Jie Li ◽  
Xi Zhang ◽  
Kaiqiang Feng ◽  
Chenjun Hu ◽  
...  

Precision-guided projectiles, which can significantly improve the accuracy and efficiency of fire strikes, are on the rise in current military engagements. The accurate measurement of roll angular rate is critical to guide a gun-launched projectile. However, Micro-Electro-Mechanical System (MEMS) gyroscope with low cost and large range cannot meet the requirement of high precision roll angular rate measurement due to the limitation by the current technology level. Aiming at the problem, the optimization-based angular rate estimation (OBARS) method specific for projectiles is proposed in this study. First, the output angular rate model of redundant gyroscope system based on the autoregressive integrated moving average (ARIMA) model is established, and then the conventional random error model is improved with the ARIMA model. After that, a Sage-Husa Adaptive Kalman Filter (SHAKF) algorithm that can suppress the time-varying process and measurement noise under the flight condition of the high dynamic of the projectile is designed for the fusion of dynamic data. Finally, simulations and experiments have been carried out to validate the performance of the method. The results demonstrate the proposed method can effectively improve the angular rate accuracy more than the related traditional methods for high spinning projectiles.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050198
Author(s):  
Tao Yin ◽  
Yueshan Lin ◽  
Haigang Yang ◽  
Huanming Wu

Phase error of the demodulation clock in the Coriolis vibratory gyroscope system allows the quadrature errors to leak into the sense channel and causes significant bias and temperature drift at the rate output. A phase self-correction method to suppress the temperature drift of the bias in gyroscopes is proposed. Through sweeping the demodulation clock phase and simultaneously monitoring the mechanical quadrature error output in gyroscopes, the optimal demodulation clock phase with minimum relatively phase shift is determined. Thus the bias influenced by the temperature and surroundings can be calibrated on-chip at start-up or when the environment changes drastically without the requirement of the complicated instruments. The proposed approach is validated by a silicon MEMS gyroscope with the natural frequency of 2.8[Formula: see text]kHz, which shows nearly 22 times improvement in the temperature sensitivity of the system bias, from 550[Formula: see text]mdeg/s/∘C down to 24.7[Formula: see text]mdeg/s/∘C.


2019 ◽  
pp. 1-1 ◽  
Author(s):  
Jinlong Song ◽  
Zhiyong Shi ◽  
Binhan Du ◽  
Lanyi Han ◽  
Zhiwei Wang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Hongzhe Jin ◽  
Yang Zhang ◽  
Hui Zhang ◽  
Zhangxing Liu ◽  
Yubin Liu ◽  
...  

This paper proposes a lateral balancing structure based on precession effect of double-gyroscopes and its associated control strategy of the steering for an underactuated unicycle robot. Double-gyroscopes are symmetrically designed on the top of the unicycle robot and utilized to adjust the lateral balance of system. Such design can inhibit the disturbance of the gyroscope system to the pitch angle and is beneficial to maintain the lateral balance in the case of large roll angle fluctuations. Based on the analysis of the dynamics model, the gyroscope precession effects will be caused by the angular velocity of the bottom wheel and the roll angular velocity, i.e., resulting in a torque in the direction of the yaw. Then, a rapid response control strategy is proposed to use the torque to control the steering. Simulation results demonstrate the rationality of the lateral balance structure and the feasibility of the steering control method.


Sign in / Sign up

Export Citation Format

Share Document