scholarly journals Studying the treatment processes of soil samples from radionuclides

ScienceRise ◽  
2021 ◽  
pp. 29-33
Author(s):  
Khagani Farzulla Mammadov ◽  
Hajar Nuhbala Shiraliyeva ◽  
Elnur Ismikhan Mehtiyev ◽  
Ulviyya Salam Aliyeva-Jabbarly ◽  
Elchin Ilham Guliyev ◽  
...  

Object of research: Soil samples contaminated with radionuclides and processes for treatment of contaminated soil. The problem to be solved: Isolation of radionuclides from contaminated soil samples by extraction with weak solutions of acids and alkalis. Main scientific results: Treatment of soil samples contaminated with uranyl nitrate using extraction with weak solutions of nitric and hydrochloric acid, caustic sodium and subsequent washing of soil residues with distilled water is effective process and leads to a more than tenfold decrease in the content of uranium isotopes (U238, U235, U234 and U236) in the soil samples. At the same time, there is a decrease in the content of natural radionuclides (Na22, K40, Zn65, Sn113, Sn126) in the extracted soil samples. An increase in their content in the extract of the analyzed soil samples corresponds to a decrease in their content in the residue of the extracted soil samples. The analysis of the values of the decrease in the content of natural radionuclides in the soil contaminated with uranyl nitrate corresponds to the values of the decrease in their content in the identical soil, but not contaminated with uranium isotopes. The combined extraction with weak solutions of acids and alkalis leads to the enrichment of the soil with nitrates and chlorine-containing compounds. The area of practical use of the research results: Subdivisions of the Ministry of Emergency Situations and Chemical Troops specializing in the study of emergencies and natural disasters can use the results of these studies in the elimination of the consequences of global environmental disasters and incidents that pose a threat to the life of the civilian population and the personnel of paramilitary units. Innovative technological product: The proposed method for treatment of soil contaminated with radionuclides makes it possible to more than tenfold reduce their concentration in the soil. Scope of application of an innovative technological product: treatment of contaminated soil in areas affected by nuclear tests or accidents at nuclear power plants.

2021 ◽  
pp. 132-135
Author(s):  
Kh.F. Mammadov ◽  
H.N. Shiraliyeva ◽  
E.I. Mehtiyev ◽  
U.S. Aliyeva-Jabbarly ◽  
E.I. Guliyev ◽  
...  

The extraction of uranyl nitrate contaminated soil with weak solutions of nitric and hydrochloric acid, caustic sodium and subsequent washing of soil residues with distilled water leads to a more than tenfold decrease in the content of uranium isotopes (U238, U235, U234, and U236) in the soil. At the same time, there is a decrease in the content of natural radionuclides (Na22, K40, Zn65, Sn113, Sn126) in the extracted soil samples. An increase in their content in the extract of the analyzed soil sample corresponds to a decrease in their content in the residue of the extracted soil sample. The combined extraction with weak solutions of these acids and alkalis leads to the enrichment of the soil with nitrates and chlorine-containing compounds of non-radioactive metals.


2021 ◽  
Vol 156 ◽  
pp. 108220
Author(s):  
Ji Tae Kim ◽  
Jonghyun Kim ◽  
Poong Hyun Seong ◽  
Jooyoung Park

Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1369-1378 ◽  
Author(s):  
Georg F. Schwarz ◽  
Ladislaus Rybach ◽  
Emile E. Klingelé

Airborne radiometric surveys are finding increasingly wider applications in environmental mapping and monitoring. They are the most efficient tool to delimit surface contamination and to locate lost radioactive sources. To secure radiometric capability in survey and emergency situations, a new sensitive airborne system has been built that includes an airborne spectrometer with 256 channels and a sodium iodide detector with a total volume of 16.8 liters. A rack mounted PC with memory cards is used for data acquisition, with a GPS satellite navigation system for positioning. The system was calibrated with point sources using a mathematical correction to take into account the effects of gamma‐ray scattering in the ground and in the atmosphere. The calibration was complemented by high precision ground gamma spectrometry and laboratory measurements on rock samples. In Switzerland, two major research programs make use of the capabilities of airborne radiometric measurements. The first one concerns nuclear power plant monitoring. The five Swiss nuclear installations (four power plants and one research facility) and the surrounding regions of each site are surveyed annually. The project goal is to monitor the dose‐rate distribution and to provide a documented baseline database. The measurements show that all sites (with the exception of the Gösgen power plant) can be identified clearly on the maps. No artificial radioactivity that could not be explained by the Chernobyl release or earlier nuclear weapons tests was detected outside of the fenced sites of the nuclear installations. The second program aims at a better evaluation of the natural radiation level in Switzerland. The survey focused on the crystalline rocks of the Central Massifs of the Swiss Alps because of their relatively high natural radioactivity and lithological variability.


2021 ◽  
Vol 30 (5) ◽  
pp. 66-75
Author(s):  
S. A. Titov ◽  
N. M. Barbin ◽  
A. M. Kobelev

Introduction. The article provides a system and statistical analysis of emergency situations associated with fires at nuclear power plants (NPPs) in various countries of the world for the period from 1955 to 2019. The countries, where fires occurred at nuclear power plants, were identified (the USA, Great Britain, Switzerland, the USSR, Germany, Spain, Japan, Russia, India and France). Facilities, exposed to fires, are identified; causes of fires are indicated. The types of reactors where accidents and incidents, accompanied by large fires, have been determined.The analysis of major emergency situations at nuclear power plants accompanied by large fires. During the period from 1955 to 2019, 27 large fires were registered at nuclear power plants in 10 countries. The largest number of major fires was registered in 1984 (three fires), all of them occurred in the USSR. Most frequently, emergency situations occurred at transformers and cable channels — 40 %, nuclear reactor core — 15 %, reactor turbine — 11 %, reactor vessel — 7 %, steam pipeline systems, cooling towers — 7 %. The main causes of fires were technical malfunctions — 33 %, fires caused by the personnel — 30 %, fires due to short circuits — 18 %, due to natural disasters (natural conditions) — 15 % and unknown reasons — 4 %. A greater number of fires were registered at RBMK — 6, VVER — 5, BWR — 3, and PWR — 3 reactors.Conclusions. Having analyzed accidents, involving large fires at nuclear power plants during the period from 1955 to 2019, we come to the conclusion that the largest number of large fires was registered in the USSR. Nonetheless, to ensure safety at all stages of the life cycle of a nuclear power plant, it is necessary to apply such measures that would prevent the occurrence of severe fires and ensure the protection of personnel and the general public from the effects of a radiation accident.


2019 ◽  
Vol 20 (1) ◽  
pp. 392-403 ◽  
Author(s):  
Sharayu Kasar ◽  
Suchismita Mishra ◽  
Yasutaka Omori ◽  
Sarata Kumar Sahoo ◽  
Norbert Kavasi ◽  
...  

2020 ◽  
Vol 189 (3) ◽  
pp. 323-336
Author(s):  
Juyoul Kim ◽  
Faith Rukundo ◽  
Ashraf Musauddin ◽  
Batbuyan Tseren ◽  
Gazi Muhammad Borhan Uddin ◽  
...  

Abstract Ensuring evacuation of people from a building in a fast and secure manner is of great significance in the event of emergency situations. This study aimed at evaluating the level of evacuation preparedness and movement of residents at the KEPCO International Nuclear Graduate School (KINGS) in the event of a nuclear emergency. Evacuation times from KINGS after a nuclear disaster at Shin Kori nuclear power plant (NPP) were estimated using Pathfinder. Four scenarios of night and day time by assuming the normal and worst scenarios were simulated. With regard to worst scenarios, the times estimated for residents to gather and leave the assembly point for the night time scenario were estimated to 22~23 min, whereas 38~39 min were calculated for the crowd to leave the assembly point. The results of this study can be used by emergency planners when planning for evacuation from a residential building nearby NPP.


Author(s):  
С. Гончаров ◽  
S. Goncharov ◽  
Г. Аветисов ◽  
G. Avetisov

The article presents the results of 25-old activity of the head agency of the Service for Disaster Medicine of the Ministry of Health of the Russian Federation – All Russian Centre for Disaster Medicine «Zaschita» (ARCDM «Zaschita») of the Ministry of Health of the Russian Federation in the sphere of medical support of population in case of radiation accidents. The Service is a functional subsystem of the Unified State system of prevention and liquidation of emergency situations, intended for elimination of medical and sanitary consequences of emergency situation. In Russia, it is legally established that in case of radiation accident the Federal Medical Biological Agency of Russia (the FMBA of Russia) is responsible for radiation safety of the population living in the NPP surveillance zone (approximately 25 km). Responsibility for the radiation safety of the rest of the population living outside the surveillance zone is assigned to the Service for disaster medicine. In accordance with the current document “Model content of the protection plan of the population in case of an accident at the radiation facility” developed by the Ministry of Emergency Situations, mandatory protective measures are provided in the territory that radius is 25 km around the radiation object (planning zones of preventive and emergency measures). Early planning in the restrictive planning zone is not envisaged, and protective measures outside the 100-kilometer zone are considered inappropriate. The article presents the concept developed by the specialists of ARCDM «Zaschita» for drafting protection of the subjects of the Russian Federation for the nuclear power plants operating on the territory of Russia. The concept is based on experience of consequences of the Chernobyl NPP accident. The concept argues that the outer boundary of the planning area for protective measures around nuclear power plants should have an outer radius of 1000 km. Radius of the emergency planning area is 100 km. The problems of preparedness for radiation safety of population support in case of radiation accidents are discussed. They are: the need for elaboration of regulatory and normative documents of the federal level on obligatory advance planning of protective measures against the possibility of radiation accidents on radiation-hazardous objects from the nuclear power plants on the territory of Russia for the population, not supervised by the FMBA of Russia (living both in the observation zone and abroad) and regulating the need and procedure of planning, organization and carrying out in case of necessity iodine prophylaxis for the population on territories up to 1000 km from operating NPPs of Russia. Same approaches to the solution of the considered problems are suggested.


Sign in / Sign up

Export Citation Format

Share Document