scholarly journals STUDY OF PURIFICATION PROCESSES OF SOIL CONTAMINATED WITH URANYL NITRATE

2021 ◽  
pp. 132-135
Author(s):  
Kh.F. Mammadov ◽  
H.N. Shiraliyeva ◽  
E.I. Mehtiyev ◽  
U.S. Aliyeva-Jabbarly ◽  
E.I. Guliyev ◽  
...  

The extraction of uranyl nitrate contaminated soil with weak solutions of nitric and hydrochloric acid, caustic sodium and subsequent washing of soil residues with distilled water leads to a more than tenfold decrease in the content of uranium isotopes (U238, U235, U234, and U236) in the soil. At the same time, there is a decrease in the content of natural radionuclides (Na22, K40, Zn65, Sn113, Sn126) in the extracted soil samples. An increase in their content in the extract of the analyzed soil sample corresponds to a decrease in their content in the residue of the extracted soil sample. The combined extraction with weak solutions of these acids and alkalis leads to the enrichment of the soil with nitrates and chlorine-containing compounds of non-radioactive metals.

ScienceRise ◽  
2021 ◽  
pp. 29-33
Author(s):  
Khagani Farzulla Mammadov ◽  
Hajar Nuhbala Shiraliyeva ◽  
Elnur Ismikhan Mehtiyev ◽  
Ulviyya Salam Aliyeva-Jabbarly ◽  
Elchin Ilham Guliyev ◽  
...  

Object of research: Soil samples contaminated with radionuclides and processes for treatment of contaminated soil. The problem to be solved: Isolation of radionuclides from contaminated soil samples by extraction with weak solutions of acids and alkalis. Main scientific results: Treatment of soil samples contaminated with uranyl nitrate using extraction with weak solutions of nitric and hydrochloric acid, caustic sodium and subsequent washing of soil residues with distilled water is effective process and leads to a more than tenfold decrease in the content of uranium isotopes (U238, U235, U234 and U236) in the soil samples. At the same time, there is a decrease in the content of natural radionuclides (Na22, K40, Zn65, Sn113, Sn126) in the extracted soil samples. An increase in their content in the extract of the analyzed soil samples corresponds to a decrease in their content in the residue of the extracted soil samples. The analysis of the values of the decrease in the content of natural radionuclides in the soil contaminated with uranyl nitrate corresponds to the values of the decrease in their content in the identical soil, but not contaminated with uranium isotopes. The combined extraction with weak solutions of acids and alkalis leads to the enrichment of the soil with nitrates and chlorine-containing compounds. The area of practical use of the research results: Subdivisions of the Ministry of Emergency Situations and Chemical Troops specializing in the study of emergencies and natural disasters can use the results of these studies in the elimination of the consequences of global environmental disasters and incidents that pose a threat to the life of the civilian population and the personnel of paramilitary units. Innovative technological product: The proposed method for treatment of soil contaminated with radionuclides makes it possible to more than tenfold reduce their concentration in the soil. Scope of application of an innovative technological product: treatment of contaminated soil in areas affected by nuclear tests or accidents at nuclear power plants.


2018 ◽  
Vol 9 (1) ◽  
pp. 79-84
Author(s):  
Vaishali V. Shahare ◽  
Rajni Grover ◽  
Suman Meena

Background: The persistent dioxins/furans has caused a worldwide concern as they influence the human health. Recent research indicates that nonmaterial may prove effective in the degradation of Dioxins/furans. The nanomaterials are very reactive owing to their large surface area to volume ratio and large number of reactive sites. However, nanotechnology applications face both the challenges and the opportunities to influence the area of environmental protection. Objective: i) To study the impact of oil mediated UV-irradiations on the removal of 2,3,7,8-TCDD, 2,3,7,8-TCDF, OCDD and OCDF in simulated soil samples. ii) To compare the conventional treatment methods with the modern available nanotechniques for the removal of selected Dioxins/furans from soil samples. Methods: The present work has investigated an opportunity of the degradation of tetra and octachlorinated dioxins and furans by using oil mediated UV radiations with subsequent extraction of respective dioxins/furans from soils. The results have been compared with the available nanotechniques. Results: The dioxin congeners in the simulated soil sample showed decrease in concentration with the increase in the exposure time and intensity of UV radiations. The dechlorination of PCDD/Fs using palladized iron has been found to be effective. Conclusion: Both the conventional methods and nanotechnology have a dramatic impact on the removal of Dioxins/furans in contaminated soil. However, the nanotechniques are comparatively costlier and despite the relatively high rates of PCDDs dechlorination by Pd/nFe, small fraction of the dioxins are recalcitrant to degradation over considerable exposure times.


2017 ◽  
Vol 23 (4) ◽  
pp. 37-44
Author(s):  
SYLVESTER UWADIAE ◽  
EMIKE OMOAYENA

This study was aimed at assessing the effectiveness of indigenous microbes for remediation of hydrocarbon contaminated soil by first increasing the population of the indigenous microbes via bioaugmentation. Soil samples were treated using a consortium of bacteria: Bacillus substilis and Pseudomonas sp. which were isolated and cultured from the contaminated soil. The non-bacteria injected soil sample had the highest hydrocarbon content (THC) of 271.021 in comparison with the other soil samples. The THC percentage removal of B1 (96.885 %), B2 (97.562 %), B3 (98.835 %), B4 (99.594 %) and B5 (99.540 %) were higher than that of the control; indicating that biodegradation actually took place.


2016 ◽  
Vol 59 ◽  
pp. 38-47
Author(s):  
Conrad K. Enenebeaku ◽  
Chidozie N. Anyanwu ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Emmanuel Nzediegwu ◽  
...  

In order to estimate plant available fraction of metals in two soil samples-contaminated soil (A) and non-contaminated soil (B), a vegetable crop,Curcubita ficifoliawas grown on both soil samples. The matured leaf was harvested and analyzed for its metal concentration after three (3) months of growth. The soil samples were collected before and after planting, digested with acid and analyzed to determine the pseudo total metal concentration and quantification was done using atomic absorption spectroscopy (AAS). To correlate metal accumulation by the vegetable with potential bioavailability of metals in soils, sequential extraction (SE) using the modified BCR technique was performed on the soils. Soil sample B was used for quality control. It was observed that each metal differed considerably in uptake. And theC. ficifoliacultivated on soil sample A had tissue concentrations of Zn, Mn and Cu as follows: 39.6mgkg-1, 18.3mgkg-1and 26.3mgkg-1respectively. Also,C. ficifoliacultivated on soil sample B had a lower absorption of Zn, Mn and Cu with concentrations of 10.21mgkg-1, 9.11mgkg-1, and 7.6mgkg-1respectively. Results of sequential extraction showed that Zn for soil sample A, and Fe for sample B were mostly present in the acid exchangeable and reducible fractions where these metals were mostly taken up.


2020 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Mahulkar Ankita Vidyadhar Vaijayanti

Amphiphilic biosurfactants are surface-active biological molecules secreted by hydrocarbanoclastic microorganisms. Biosurfactants are eco-friendly, less toxic, biodegradable, and low-cost material, so it has more advantages over chemical surfactants. In this research, Pseudomonas spp., biosurfactant producing microorganisms isolated from different sources of soil samples. IS1, IS2, IS3, IS4 isolates obtained from Garden soil sample; Metal contaminated soil sample; Petroleum contaminated soil sample; Oil contaminated soil sample; respectively. Each isolates identified as Pseudomonas spp. Furthermore, screened for biosurfactant producers. Each isolate showed positive results for the hemolysis test, drop collapse test, oil displacement test, and emulsification test. All isolate incubated in mineral salt medium for biosurfactant production. Biosurfactant extracted from IS1, IS2, IS3, IS4 showed 35%, 65%, 20%, 52% emulsification index respectively. Antimicrobial activity of extracted biosurfactants against pathogenic microorganisms checked by agar cup method. IS2 isolate shows the highest antimicrobial activity among all. All isolate showed a higher zone of inhibition against gram-positive microorganisms than gram-negative microbes. The purpose of this study involves the assessment of the antimicrobial activity of biosurfactant producers from the soil environment.


2018 ◽  
Vol 23 (4) ◽  
Author(s):  
SYLVESTER UWADIAE ◽  
EMIKE OMOAYENA

<p>This study was aimed at assessing the effectiveness of indigenous microbes for remediation of hydrocarbon contaminated soil by first increasing the population of the indigenous microbes via bioaugmentation. Soil samples were treated using a consortium of bacteria: <em>Bacillus substilis</em> and <em>Pseudomonas sp</em>. which were isolated and cultured from the contaminated soil. The non-bacteria injected soil sample had the highest hydrocarbon content (THC) of 271.021 in comparison with the other soil samples. The THC percentage removal of B1 (96.885 %), B2 (97.562 %), B3 (98.835 %), B4 (99.594 %) and B5    (99.540 %) were higher than that of the control; indicating that biodegradation actually took place.</p>


2021 ◽  
Vol 6 (2) ◽  
pp. 9-22
Author(s):  
Ismail Muhibbu-din ◽  
Ayodele Isaac Isaac

The contamination of soil in the environment is a natural consequence of industrialization and urbanization. Organic chemical pollutants dissolve into groundwater, absorb and adsorb into soil grains. Benzene, toluene, ethylbenzene and xylene (BTEX) are major causes of contaminated soil. This is due to fuel leakages or spillages, various forms of hydrocarbon burning/combustion and land disposal petroleum base oil. Contaminated soil samples were excavated from two different locations within the Ilorin metropolis; pipelines and products marketing company, a Nigerian petroleum depot, Ilorin depot and auto mechanic workshop of over ten years. Steam enhanced extraction method was employed through injection of steam to contaminated soil from steam generator into soil pot where contaminated soil was placed. The condensation of steam on soil particles provides energy to release desorbed contaminants molecules from the soil and the mobilized contaminants vapor was transferred into the recovery pot via the pipe that was connected to the soil pot. After the remediation process, the steamed soil samples were taken to the laboratory where the sonication extraction technique was used to extract the contaminants (BTEX) from the steamed soil samples of 30, 60 and 90 minutes respectively. The extract from the steamed soil samples of 30, 60 and 90 minutes was subjected to Gas Chromatography fitted with flame ionization detector analysis to determine the exact amount of BTEX removed after the remediation process. Pre-treated soil sample of auto mechanics workshop was found to be 4.5004 x 10-1 mg/kg and post-treated soil samples were found to be 1.8164 x10-1 mg/kg, 8.7519 x10-1 mg/kg and 5.7006 x10-2 mg/kg  for 30, 60 and 90 minutes respectively after remediation process while Pre-treated soil sample of a Nigerian petroleum depot was found to be 6.6049 x 10-1 mg/kg and post-treated soil samples were found to be 2.9320 x10-1 mg/kg, 1.9855 x10-1 mg/kg and 1.0237 x10-1 mg/kg  for 30, 60 and 90 minutes respectively after the remediation process. This study established the effectiveness of the remediation process of hydrocarbon contaminated soil using steam enhanced extraction method an In situ remediation technique.


2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


Author(s):  
Beheshteh Haghparast-kenari ◽  
Tooran Nayeri ◽  
Shahabeddin Sarvi ◽  
Mohammad Taghi Rahimi ◽  
Ehsan Ahmadpour ◽  
...  

Background: Soil-transmitted parasites (STPs) are significant intestinal parasites that infect humans and animals and impose considerable burdens on human society and animal husbandry industries. Therefore, the present study aimed to determine the prevalence of parasitic elements of soil samples collected from the north of Iran. Methods: A total of 256 soil samples were collected from public parks, public places, vegetable gardens, sand heaps, and shadow areas near houses in the north of Iran and examined using the sucrose flotation method. Results: Out of 256 examined samples, 131 (51.2%) ones showed parasitic contamination including larvae (43%), oocysts (14.1%), and different eggs (6.6%). According to the results, the most and least common parasites observed in the samples were larvae (43%), as well as Toxascaris leonina, and Trichuris trichiura (0.4%), respectively. Moreover, the most and least contaminated locations were sand heaps (62.5%) and shadow areas near houses (45.6%), respectively. Regarding cities, Behshahr (68.3%) and Sari (67.5%) had the highest contaminated soil samples, whereas Chalus (37.5%) showed the lowest contamination. On the other hand, rural samples showed more contamination, compared to urban areas (P< 0.05). Conclusion: The findings of the present study indicate that the overall prevalence of STPs in examined areas and highly contaminated soil samples can be considered as a potential source of human contamination particularly tourists with STPs.


Sign in / Sign up

Export Citation Format

Share Document