A simulation-based model for optimal demand response load shifting: a case study for the Texas power market

2019 ◽  
pp. 53-80 ◽  
Author(s):  
Jacob R. Schaperow
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3361 ◽  
Author(s):  
Venkat Durvasulu ◽  
Timothy Hansen

In most U.S. market sponsored demand response (DR) programs, revenue earned from energy markets has been relatively low compared to DR used for capacity markets and ancillary services. This paper presents an aggregated DR model participating in the bulk-power market as a service through a pool-based entity called demand response exchange (DRX). Using the DRX structure, DR providers can participate in energy markets as a service to benefit bulk-power market entities. The benefits and challenges to each market entity using DR-as-a-service are presented in an extended review. The DRX model in this study is a market entity that operates with the day-ahead market to select DR offers that minimize electric utility payments. A case study was performed using the proposed DRX model on the IEEE 24-bus system, augmented to represent actual bulk-power market prices to study factors that influence utility payments under the DRX-market paradigm. Two high-price days of the PJM market were simulated, and it was shown for a single day on the augmented test case that spending $69,955 for DR-as-a-service results in a reduction of utility payments of $864,199. The day-ahead generator supply curve, network congestion, and DR curtailment were found to be the most influencing factors that impact the benefit of using DR-as-a-service.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1555-1560
Author(s):  
Xian Jun Ge ◽  
Li Qiang Zhao ◽  
Nai Shi Chen ◽  
Dan Li

This article describes the core architecture and simulation mechanism of Gridlab-d, studied demand response based on gridlab-d, designed simulation case based on IEEE 13 node test feeder including a variety of residential load, simulated different pricing strategy, evaluated the simulation result with specific indicators. This article has certain reference value for simulation based on Gridlab-d. This study demonstrates the significance of demand response for peak load shifting and smooth power fluctuation.


Author(s):  
Hassan Jalili ◽  
Pierluigi Siano

Abstract Demand response programs are useful options in reducing electricity price, congestion relief, load shifting, peak clipping, valley filling and resource adequacy from the system operator’s viewpoint. For this purpose, many models of these programs have been developed. However, the availability of these resources has not been properly modeled in demand response models making them not practical for long-term studies such as in the resource adequacy problem where considering the providers’ responding uncertainties is necessary for long-term studies. In this paper, a model considering providers’ unavailability for unforced demand response programs has been developed. Temperature changes, equipment failures, simultaneous implementation of demand side management resources, popular TV programs and family visits are the main reasons that may affect the availability of the demand response providers to fulfill their commitments. The effectiveness of the proposed model has been demonstrated by numerical simulation.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3658
Author(s):  
Hyeunguk Ahn ◽  
Jingjing Liu ◽  
Donghun Kim ◽  
Rongxin Yin ◽  
Tianzhen Hong ◽  
...  

Although the thermal mass of floors in buildings has been demonstrated to help shift cooling load, there is still a lack of information about how floor covering can influence the floor’s load shifting capability and buildings’ demand flexibility. To fill this gap, we estimated demand flexibility based on the daily peak cooling load reduction for different floor configurations and regions, using EnergyPlus simulations. As a demand response strategy, we used precooling and global temperature adjustment. The result demonstrated an adverse impact of floor covering on the building’s demand flexibility. Specifically, under the same demand response strategy, the daily peak cooling load reductions were up to 20–34% for a concrete floor whereas they were only 17–29% for a carpet-covered concrete floor. This is because floor covering hinders convective coupling between the concrete floor surface and the zone air and reduces radiative heat transfer between the concrete floor surface and the surrounding environment. In hot climates such as Phoenix, floor covering almost negated the concrete floor’s load shifting capability and yielded low demand flexibility as a wood floor, representing low thermal mass. Sensitivity analyses showed that floor covering’s effects can be more profound with a larger carpet-covered area, a greater temperature adjustment depth, or a higher radiant heat gain. With this effect ignored for a given building, its demand flexibility would be overestimated, which could prevent grid operators from obtaining sufficient demand flexibility to maintain a grid. Our findings also imply that for more efficient grid-interactive buildings, a traditional standard for floor design could be modified with increasing renewable penetration.


2021 ◽  
Vol 781 (4) ◽  
pp. 042009
Author(s):  
Weijie Shen ◽  
Cheng Fang ◽  
Jiaxin Ma ◽  
Jialin Lin ◽  
Ming Zeng

Sign in / Sign up

Export Citation Format

Share Document