Drug Metabolizing Enzymes As a Causal Factor in the Inter-species Differences in Drug Action.

1995 ◽  
Vol 10 (3) ◽  
pp. 372-385
Author(s):  
TETSUYA KAMATAKI
2008 ◽  
Vol 36 (4) ◽  
pp. 702-714 ◽  
Author(s):  
Lysiane Richert ◽  
Gregor Tuschl ◽  
Catherine Viollon-Abadie ◽  
Nadège Blanchard ◽  
Alexandre Bonet ◽  
...  

2005 ◽  
Vol 7 (3) ◽  
pp. 223-230

Genetic factors are believed to play a major role in the variation of treatment response and the incidence of adverse effects to medication. The aim of pharmacogenetics is to elucidate this variability according to hereditary differences. Considering current hypotheses for the mechanisms of action of antidepressants, most investigations to date have concentrated on mutations in genes coding either for the pathways in the serotonergic and noradrenergic systems or for drug-metabolizing enzymes. Recent studies shifted the emphasis on the main mechanism of drug action from changes in neurotransmitter concentration or receptor function toward long-lasting adaptive processes within the neurons. Although the results are controversial, many studies support the hypothesis that psychopharmacogenetics will help predict an individual's drug response, while minimizing the side effects. The inclusion of functional genomics, which investigates the complex gene and/or protein expression in response to a given drug, may lead to the development of novel and safer drugs.


2002 ◽  
Vol 30 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Alexis B. Ulrich ◽  
Jens Standop ◽  
Bruno M. Schmied ◽  
Matthias B. Schneider ◽  
Terence A. Lawson ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 1152-1160
Author(s):  
Imadeldin Elfaki ◽  
Rashid Mir ◽  
Faisel Mohammed Abu-Duhier ◽  
Chandan Kumar Jha ◽  
Adel Ibrahim Ahmad Al-Alawy ◽  
...  

Background:: Cytochrome P450s (CYPs) are drug-metabolizing enzymes catalyzing the metabolism of about 75% of drug in clinical use. CYP2C9 represents 20% CYP proteins in liver cells and is a crucial member of CYPs superfamily. CYP2C19 metabolizes very important drugs such as antiulcer drug omeprazole, the antiplatelet drug clopidogrel and anticonvulsant mephenytoin. Single nucleotide polymorphisms (SNPs) of CYP genes have been associated with unexpected drug reactions and diseases in different populations. Objective:: We examined the associations of CYP2C9*3 (rs1057910) and CYP2C19*3 (rs4986893) with T2D in Saudi population. Methods:: We used the allele-specific PCR (AS-PCR) and DNA sequencing in 111 cases and 104 controls for rs1057910, and in 119 cases and 110 controls for rs4986893. Results:: It is indicated that the genotype distribution of rs1057910 in cases and controls were not significantly different (P=0.0001). The genotypes of rs1057910 were not associated with type 2 diabetes (T2D) (P>0.05). Whereas the genotype distribution of rs4986893 in cases and controls was significantly different (P=0.049). The AA genotype of rs4986893 may be associated in increased risk to T2D with OR=17.25 (2.06-143.8), RR=6.14(0.96-39.20), P=0.008. Conclusion:: The CYP2C9*3 (rs1057910) may not be associated with T2D, while CYP2C19*3 (rs4986893) is probably associated with T2D. These findings need to be validated in follow-up studies with larger sample sizes and different populations.


Sign in / Sign up

Export Citation Format

Share Document