Failure of Chemotherapy in Hepatocellular Carcinoma Due to Impaired and Dysregulated Primary Liver Drug Metabolizing Enzymes and Drug Transport Proteins: What to Do?

2018 ◽  
Vol 19 (10) ◽  
pp. 819-829 ◽  
Author(s):  
Salman Ul-Islam ◽  
Muhammad Bilal Ahmed ◽  
Adeeb Shehzad ◽  
Mazhar Ul-Islam ◽  
Young Sup Lee
Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4106-4112 ◽  
Author(s):  
Michael D. Caldwell ◽  
Tarif Awad ◽  
Julie A. Johnson ◽  
Brian F. Gage ◽  
Mat Falkowski ◽  
...  

Abstract Warfarin is an effective, commonly prescribed anticoagulant used to treat and prevent thrombotic events. Because of historically high rates of drug-associated adverse events, warfarin remains underprescribed. Further, interindividual variability in therapeutic dose mandates frequent monitoring until target anticoagulation is achieved. Genetic polymorphisms involved in warfarin metabolism and sensitivity have been implicated in variability of dose. Here, we describe a novel variant that influences warfarin requirements. To identify additional genetic variants that contribute to warfarin requirements, screening of DNA variants in additional genes that code for drug-metabolizing enzymes and drug transport proteins was undertaken using the Affymetrix drug-metabolizing enzymes and transporters panel. A DNA variant (rs2108622; V433M) in cytochrome P450 4F2 (CYP4F2) was associated with warfarin dose in 3 independent white cohorts of patients stabilized on warfarin representing diverse geographic regions in the United States and accounted for a difference in warfarin dose of approximately 1 mg/day between CC and TT subjects. Genetic variation of CYP4F2 was associated with a clinically relevant effect on warfarin requirement.


2020 ◽  
Vol 21 (14) ◽  
pp. 1152-1160
Author(s):  
Imadeldin Elfaki ◽  
Rashid Mir ◽  
Faisel Mohammed Abu-Duhier ◽  
Chandan Kumar Jha ◽  
Adel Ibrahim Ahmad Al-Alawy ◽  
...  

Background:: Cytochrome P450s (CYPs) are drug-metabolizing enzymes catalyzing the metabolism of about 75% of drug in clinical use. CYP2C9 represents 20% CYP proteins in liver cells and is a crucial member of CYPs superfamily. CYP2C19 metabolizes very important drugs such as antiulcer drug omeprazole, the antiplatelet drug clopidogrel and anticonvulsant mephenytoin. Single nucleotide polymorphisms (SNPs) of CYP genes have been associated with unexpected drug reactions and diseases in different populations. Objective:: We examined the associations of CYP2C9*3 (rs1057910) and CYP2C19*3 (rs4986893) with T2D in Saudi population. Methods:: We used the allele-specific PCR (AS-PCR) and DNA sequencing in 111 cases and 104 controls for rs1057910, and in 119 cases and 110 controls for rs4986893. Results:: It is indicated that the genotype distribution of rs1057910 in cases and controls were not significantly different (P=0.0001). The genotypes of rs1057910 were not associated with type 2 diabetes (T2D) (P>0.05). Whereas the genotype distribution of rs4986893 in cases and controls was significantly different (P=0.049). The AA genotype of rs4986893 may be associated in increased risk to T2D with OR=17.25 (2.06-143.8), RR=6.14(0.96-39.20), P=0.008. Conclusion:: The CYP2C9*3 (rs1057910) may not be associated with T2D, while CYP2C19*3 (rs4986893) is probably associated with T2D. These findings need to be validated in follow-up studies with larger sample sizes and different populations.


Sign in / Sign up

Export Citation Format

Share Document