Line Source Carbon Dioxide Release. II. Two‐Dimensional Numerical Diffusion Model 1

1974 ◽  
Vol 66 (5) ◽  
pp. 616-620 ◽  
Author(s):  
L. H. Allen
1974 ◽  
Vol 66 (5) ◽  
pp. 609-615 ◽  
Author(s):  
L. H. Allen ◽  
R. L. Desjardins ◽  
E. R. Lemon

1975 ◽  
Vol 8 (1) ◽  
pp. 39-79 ◽  
Author(s):  
L. H. Allen

Author(s):  
Grażyna Mazurkiewicz-Boroń ◽  
Teresa Bednarz ◽  
Elżbieta Wilk-Woźniak

Microbial efficiency in a meromictic reservoirIndices of microbial efficiency (expressed as oxygen consumption and carbon dioxide release) were determined in the water column of the meromictic Piaseczno Reservoir (in an opencast sulphur mine), which is rich in sulphur compounds. Phytoplankton abundances were low in both the mixolimnion (up to 15 m depth) and monimolimnion (below 15 m depth). In summer and winter, carbon dioxide release was 3-fold and 5-fold higher, respectively, in the monimolimnion than in the mixolimnion. Laboratory enrichments of the sulphur substrate of the water resulted in a decrease in oxygen consumption rate of by about 42% in mixolimnion samples, and in the carbon dioxide release rate by about 69% in monimolimnion samples. Water temperature, pH and bivalent ion contents were of major importance in shaping the microbial metabolic efficiency in the mixolimnion, whilst in the monimolimnion these relationships were not evident.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Shao ◽  
Xiaodong Zhang

Carbon dioxide (CO2) from the excessive consumption of fossil fuels has exhibited a huge threat to the planet’s ecosystem. Electrocatalytic CO2 reduction into value-added chemicals have been regarded as a...


Nonlinearity ◽  
2017 ◽  
Vol 30 (4) ◽  
pp. 1536-1563 ◽  
Author(s):  
Shuangquan Xie ◽  
Theodore Kolokolnikov

2021 ◽  
Author(s):  
Jarad Mason ◽  
Jinyoung Seo ◽  
Ryan McGillicuddy ◽  
Adam Slavney ◽  
Selena Zhang ◽  
...  

Abstract Nearly 4,400 TWh of electricity—20% of the total consumed in the world—is used each year by refrigerators, air conditioners, and heat pumps for cooling. In addition to the 2.3 Gt of carbon dioxide emitted during the generation of this electricity, the vapor-compression-based devices that provided the bulk of this cooling emitted fluorocarbon refrigerants with a global warming potential equivalent to 1.5 Gt of carbon dioxide into the atmosphere. With population and economic growth expected to dramatically increase over the next several decades, the development of alternative cooling technologies with improved efficiency and reduced emissions will be critical to meeting global cooling needs in a more sustainable fashion. Barocaloric materials, which undergo thermal changes in response to applied hydrostatic pressure, offer the potential for solid-state cooling with high energy efficiency and zero direct emissions, as well as faster start-up times, quieter operation, greater amenability to miniaturization, and better recyclability than conventional vapor-compression systems. Efficient barocaloric cooling requires materials that undergo reversible phase transitions with large entropy changes, high sensitivity to hydrostatic pressure, and minimal hysteresis, the combination of which has been challenging to achieve in existing barocaloric materials. Here, we report a new mechanism for achieving colossal barocaloric effects near ambient temperature that exploits the large volume and conformational entropy changes of hydrocarbon chain-melting transitions within two-dimensional metal–halide perovskites. Significantly, we show how the confined nature of these order–disorder phase transitions and the synthetic tunability of layered perovskites can be leveraged to reduce phase transition hysteresis through careful control over the inorganic–organic interface. The combination of ultralow hysteresis (< 1.5 K) and high barocaloric coefficients (> 20 K/kbar) leads to large reversible isothermal entropy changes (> 200 J/kg•K) at record-low pressures (< 300 bar). We anticipate that these results will help facilitate the development of barocaloric cooling technologies and further inspire new materials and mechanisms for efficient solid-state cooling.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 1000-1005
Author(s):  
C. Nehrbass-Ahles ◽  
J. Shin ◽  
J. Schmitt ◽  
B. Bereiter ◽  
F. Joos ◽  
...  

Pulse-like carbon dioxide release to the atmosphere on centennial time scales has only been identified for the most recent glacial and deglacial periods and is thought to be absent during warmer climate conditions. Here, we present a high-resolution carbon dioxide record from 330,000 to 450,000 years before present, revealing pronounced carbon dioxide jumps (CDJ) under cold and warm climate conditions. CDJ come in two varieties that we attribute to invigoration or weakening of the Atlantic meridional overturning circulation (AMOC) and associated northward and southward shifts of the intertropical convergence zone, respectively. We find that CDJ are pervasive features of the carbon cycle that can occur during interglacial climate conditions if land ice masses are sufficiently extended to be able to disturb the AMOC by freshwater input.


Sign in / Sign up

Export Citation Format

Share Document