co2 release
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 62)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 905
Author(s):  
Pia Minixhofer ◽  
Bernhard Scharf ◽  
Sebastian Hafner ◽  
Oliver Weiss ◽  
Christina Henöckl ◽  
...  

At conventional construction sites, the removal of soil and other excavated materials causes enormous mass movement, with a significant climate impact and contribution to global CO2 release. This study aimed to generate a Circular Soil concept for reusing excavated materials by creating engineered soils for landscape construction at large building sites. Engineered soils act as a substitute for natural soils and fulfill vital technical and soil functions when installing an urban green infrastructure (GI). In a field study, the vegetation performance on engineered soils was evaluated to establish a methodological approach, to assess the applicability of the Circular Soil concept. First, the technical specifications (grain-size distribution) were modeled for intensive green roof and turfgrass applications. Then, the soil components were optimized, mixed, installed and tested for greenery purposes, focusing on plant growth performance indicators (vitality, projective cover ratio and grass-herb ratio) to assess the vegetation performance. The results showed that the engineered soils match the performance of the reference soil alternatives. In conclusion, the Circular Soil concept has a high potential to contribute considerably to sustainable on-site soil management and the circular economy. It can be applied on a larger scale for urban GI development and sustainable resources management in the landscaping and construction sector.


Author(s):  
Tormod T. C. Rowe ◽  
Martin S. Gutbrod ◽  
Philip G. D. Matthews

It has been hypothesised that insects display discontinuous gas-exchange cycles (DGCs) due to hysteresis in their ventilatory control, where CO2-sensitive respiratory chemoreceptors respond to changes in hemolymph PCO2 only after some delay. If correct, DGCs would be a manifestation of an unstable feedback loop between chemoreceptors and ventilation causing PCO2 to oscillate around some fixed threshold value: PCO2 above this ventilatory threshold would stimulate excessive hyperventilation, driving PCO2 below the threshold and causing a subsequent apnoea. This hypothesis was tested by implanting micro-optodes into the hemocoel of Madagascar hissing cockroaches and measuring hemolymph PO2 and PCO2 simultaneously during continuous and discontinuous gas exchange. The mean hemolymph PCO2 of 1.9 kPa measured during continuous gas exchange was assumed to represent the threshold level stimulating ventilation, and this was compared with PCO2 levels recorded during DGCs elicited by decapitation. Cockroaches were also exposed to hypoxic (PO2 10 kPa) and hypercapnic (PCO2 2 kPa) gas mixtures to manipulate hemolymph PO2 and PCO2. Decapitated cockroaches maintained DGCs even when their hemolymph PCO2 was forced above or below the putative ∼2 kPa ventilation threshold, demonstrating that the characteristic oscillation between apnoea and gas exchange is not driven by a lag between changing hemolymph PCO2 and a PCO2 chemoreceptor with a fixed ventilatory threshold. However, it was observed that the gas exchange periods within the DGC were altered to enhance O2 uptake and CO2 release during hypoxia and hypercapnia exposure. This indicates that while respiratory chemoreceptors do modulate ventilatory activity in response to hemolymph gas levels, their role in initiating or terminating the gas exchange periods within the DGC remains unclear.


Soil Security ◽  
2022 ◽  
pp. 100041
Author(s):  
Yunyun Zheng ◽  
Xiaojuan Wang ◽  
Jian Jin ◽  
Gary J Clark ◽  
Caixian Tang

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2595
Author(s):  
Gastón A. Iocoli ◽  
Luciano Orden ◽  
Fernando M. López ◽  
Marisa A. Gómez ◽  
María B. Villamil ◽  
...  

Mineralization studies are the first step in determining the usefulness of an amendment such as fertilizer, and are essential to creating guidelines for dairy waste management to help producers make informed decisions. Our goal was to assess the effects of dairy raw, composted, and digested manure amendments on C, N, and P mineralization to evaluate the feasibility of their in-farm production and use as organic fertilizers. The liquid and solid fractions of dairy effluent (LDE, SDE), dairy effluent digestate (DED), onion–cattle manure digestate and compost (OCMD, OCMC) were characterized by chemical and spectroscopic methods. Soil microcosms with LDE, SDE, DED, OCMD and OCMC and the C, N and P mineralization were determined periodically. Elemental and structural differences among amendments led to contrasting profiles of C, N, and P mineralization, and thus to differences in nutrient availability, immobilization, and CO2 emission. All processed materials were more stable than untreated waste, reducing C emissions. Digestates showed net C immobilization, and supplied the highest levels of available N, creating a relative P deficit. Instead, the compost supplied N and P via mineralization, producing a relative P excess. Future studies should aim at evaluating fertilization strategies that combine both kinds of amendments, to exploit their complimentary agronomic characteristics.


Author(s):  
Shuai Zhang ◽  
Junjie Lin ◽  
Peng Wang ◽  
Biao Zhu

Global climate change is expected to increase the frequency of drought and heavy precipitation, which could create more frequent drying-rewetting cycles (DWC) in the soils. Although DWC effects on SOC decomposition has been widely studied, the effect of DWC and the subsequent legacy effect on the decomposition of different SOC pools is still unclear. We conducted a 128-d laboratory incubation to investigate the DWC effects by using soils from old-field for 15 years (OF, representing active SOC), bare-fallow for 15 years (BF), and bare-fallow for 23 years plus extra 815-d incubation (BF+, representing relatively resistant SOC). The experiment included nine 10-d DWC of three treatments: 1) constant-moisture at 60% WHC, 2) mild DWC with 10-d drying to 40% WHC and rewetting to 80% WHC, and 3) strong DWC with 10-d drying to 20% WHC and rewetting to 100% WHC. Following DWC period, there was a 10-d stabilization period (adjusting all treatments to 60% WHC), and then a 28-d extended incubation. During DWC period, the strong DWC had strong effect on CO2 release compared with the constant-moisture control, reducing the SOC decomposition from OF by 8% and BF by 10%, while increasing the SOC decomposition of BF+ by 16%. During extended period, both mild and strong DWC significantly increased SOC mineralization of OF, but decreased that of BF and BF+. This legacy effect compensated the changes in CO2 release during DWC period, resulting in the minor response of SOC decomposition of OF and BF+ to the DWC during the entire incubation.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1380
Author(s):  
Bayu Dume ◽  
Ales Hanc ◽  
Pavel Svehla ◽  
Pavel Míchal ◽  
Abraham Demelash Chane ◽  
...  

Owing to rapid population growth, sewage sludge poses a serious environmental threat across the world. Composting and vermicomposting are biological technologies commonly used to stabilize sewage sludge. The objective of this study was to assess the carbon dioxide (CO2) and methane (CH4) emissions from sewage sludge composting and vermicomposting under the influence of different proportions of straw pellets. Four treatments were designed, by mixing the initial sewage sludge with varying ratio of pelletized wheat straw (0, 25%, 50%, and 75% (w/w)). The experiment was conducted for 60 days, and Eisenia andrei was used for vermicomposting. The results revealed that the mixing ratio influenced CO2 (F = 36.1, p = 0.000) and CH4 (F= 73.9, p = 0.000) emissions during composting and CO2 (F= 13.8, p = 0.000) and CH4 (F= 4.5, p= 0.004) vermicomposting. Vermicomposting significantly reduced CH4 emissions by 18–38%, while increasing CO2 emissions by 64–89%. The mixing agent (pelletized wheat straw) decreased CO2 emission by 60–70% and CH4 emission by 30–80% compared to control (0%). The mass balance indicated that 5.5–10.4% of carbon was loss during composting, while methane release accounted for 0.34–1.69%, and CO2 release accounted for 2.3–8.65%. However, vermicomposting lost 8.98–13.7% of its carbon, with a methane release of 0.1–0.6% and CO2 release of 5.0–11.6% of carbon. The carbon loss was 3.3–3.5% more under vermicomposting than composting. This study demonstrated that depending on the target gas to be reduced, composting and vermicomposting, as well as a mixing agent (pelletized wheat straw), could be an option for reducing greenhouse gas emissions (i.e. CH4, CO2).


Nature ◽  
2021 ◽  
Vol 597 (7876) ◽  
pp. 366-369 ◽  
Author(s):  
Ivar R. van der Velde ◽  
Guido R. van der Werf ◽  
Sander Houweling ◽  
Joannes D. Maasakkers ◽  
Tobias Borsdorff ◽  
...  
Keyword(s):  

2021 ◽  
Vol 110 ◽  
pp. 103427
Author(s):  
Allison Schaap ◽  
Dirk Koopmans ◽  
Moritz Holtappels ◽  
Marius Dewar ◽  
Martin Arundell ◽  
...  
Keyword(s):  
On Chip ◽  

Sign in / Sign up

Export Citation Format

Share Document