Diurnal Changes in Plant Water Potential and Canopy Temperature of Wheat as Affected by Drought 1

1978 ◽  
Vol 70 (6) ◽  
pp. 999-1004 ◽  
Author(s):  
W. L. Ehrler ◽  
S. B. Idso ◽  
R. D. Jackson ◽  
R. J. Reginato
1975 ◽  
Vol 2 (4) ◽  
pp. 489 ◽  
Author(s):  
BR Tunstall ◽  
DJ Connor

On one day each month over a period of 2½ years, diurnal measurements of plant water status, leaf diffusive resistance, carbon uptake, irradiance, ambient temperature and humidity were made in a brigalow community. Diurnal changes in leaf diffusive resistance, osmotic potential, plant water potential, and carbon uptake are shown to follow general patterns and the changes in plant water potential were related to the dawn value of plant water potential. The data suggest the development of negative turgor in brigalow and demonstrate the capacity of the plant to maintain high tissue water contents at low water potentials. Measurements of shoot extension and litter fall showed that litter fall occurred principally following shoot extension.


1978 ◽  
Vol 70 (2) ◽  
pp. 251-256 ◽  
Author(s):  
W. L. Ehrler ◽  
S. B. Idso ◽  
R. D. Jackson ◽  
R. J. Reginato

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541b-541
Author(s):  
Rita Giuliani ◽  
James A. Flore

Potted peach trees grown outdoors during the 1997 season were subjected to drought and subsequent rewatering to evaluate their dynamic response to soil water content. The investigation was primarily focused on the early detection of plant water stress to prevent negative effects on the growth. Leaf chlorophyll fluorescence and canopy temperature estimates (by infra-red thermometry) were conducted. Drought effect on physiological processes were detected through by estimates of canopy development rate, leaf gas-exchange measurements; while leaf water potential was measured to characterize plant water status. A decrease in the canopy's development rate was found 1 week after irrigation was stopped, which also coincided with a more-negative leaf water potential, whereas a decrease of the gas-exchange activities occurred several days later. No significant differences between the stressed and control plants were recorded by the chlorophyll fluorescence parameters (Fo, Fm, Fv and the ratio Fv/Fm), whereas the infra-red estimates of canopy temperature detected a slight increase of the canopy surface temperature (connected to the change of leaf energy balance and in relation to partial stomatal closure) on the non-irrigated plants 1 week after the beginning of the trial. The use of infra-red thermometry for early detection of water shortage is discussed.


2010 ◽  
Author(s):  
Vasu Udompetaikul ◽  
Shrini K Upadhyaya ◽  
David C Slaughter ◽  
Bruce D Lampinen

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.


Sign in / Sign up

Export Citation Format

Share Document