scholarly journals Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2780
Author(s):  
Victor Blanco ◽  
Lee Kalcsits

Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 323
Author(s):  
Ana Fernandes de Oliveira ◽  
Massimiliano Giuseppe Mameli ◽  
Mauro Lo Cascio ◽  
Costantino Sirca ◽  
Daniela Satta

We propose an index for proximal detection of water requirements to optimize the use of water resources in arid and semi-arid wine growing regions. To test the accuracy and representativeness of the proposed irrigation need index (IIN), plant water status and physiological performances were monitored during seasons 2019 and 2020 in two grapevine varieties with different anisohydric degree (Vermentino and Cannonau) grown in 3 sites in Sardinia (Italy). Daily leaf gas exchange curves and stem water potential were recorded. Canopy temperature was monitored, using both thermistor sensors (Tc) and infrared thermometry (IR). Meteorological data, including dry and wet bulb temperatures were collected to compute and parametrize IIN, based on energy balance equation. Vineyard water balance, thermal time and irrigation water productivity were characterized. Linear regression analysis allowed to validate IIN for both varieties and to establish target thresholds for mild, moderate and severe water deficit to optimize irrigation for high yield and quality objectives. IIN well represents plant water status, using either Tc or IR, and allows rapid and easy detection of water and heat stress condition, even when a stricter stomatal control determines slighter variation and lower response of stem water potential, as in plants with low anisohydric degree.


2011 ◽  
Vol 38 (5) ◽  
pp. 372 ◽  
Author(s):  
Gregorio Egea ◽  
Ian C. Dodd ◽  
María M. González-Real ◽  
Rafael Domingo ◽  
Alain Baille

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.


2002 ◽  
Vol 127 (3) ◽  
pp. 448-454 ◽  
Author(s):  
L.E. Williams ◽  
F.J. Araujo

A study was conducted to compare three measurements of determining water status of grapevines (Vitis vinifera L.) in the field. Predawn leaf water potential (ΨPD), midday leaf water potential (Ψl), and midday stem water potential (Ψstem) were measured on `Chardonnay' and `Cabernet Sauvignon' grapevines grown in Napa Valley, California late in the 1999 growing season. Both cultivars had been irrigated weekly at various fractions (0, 0.5, and 1.0 for `Chardonnay' and 0, 0.5, 0.75, and 1.5 for `Cabernet') of estimated vineyard evapotranspiration (ETc) from approximately anthesis up to the dates of measurements. Predawn water potential measurements were taken beginning at 0330 hr and completed before sunrise. Midday Ψl and Ψstem measurements were taken only between 1230 and 1330 hr. In addition, net CO2 assimilation rates (A) and stomatal conductance to water vapor (gs) were also measured at midday. Soil water content (SWC) was measured in the `Chardonnay' vineyard using a neutron probe. Values obtained for ΨPD, Ψl, and Ψstem in this study ranged from about -0.05 to -0.8, -0.7 to -1.8, and -0.5 to -1.6 MPa, respectively. All three measurements of vine water status were highly correlated with one another. Linear regression analysis of Ψl and Ψstem versus ΨPD resulted in r2 values of 0.88 and 0.85, respectively. A similar analysis of Ψl as a function of Ψstem resulted in an r2 of 0.92. In the `Chardonnay' vineyard, all three methods of estimating vine water status were significantly (P < 0.01) correlated with SWC and applied amounts of water. Lastly, ΨPD, Ψl, and Ψstem were all linearly correlated with measurements of A and gs at midday. Under the conditions of this study, ΨPD, Ψl, and Ψstem represent equally viable methods of assessing the water status of these grapevines. They were all correlated similarly with the amount of water in the soil profile and leaf gas exchange as well as with one another.


2014 ◽  
Vol 32 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Jhon Jairo Arévalo ◽  
Javier Enrique Vélez S. ◽  
Diego Sebastiano Intrigliolo

An experiment on rose (Rosa sp.) cv. Freedom was performed in a greenhouse on the Bogota Plateau, Colombia, to identify an efficient irrigation regime for this crop. The tested treatments were based on three irrigation doses, applying different fractions of the estimated crop evapotranspiration (ETc), calculated using a class A evaporation tank: i) 100% ETc (ETc100), ii) 80% ETc (ETc80) and iii) 70% ETc (ETc70). During the entire experimental period, from mid-May to early September, the crop had a constant production of floral stems. In all of the irrigation treatments, the soil and plant water status were monitored using tensiometers and the midday stem water potential, respectively (ystem). In the fully irrigated roses, the actual water use was determined using a drainage lysimeter in order to obtain the local crop coefficients (Kc) by means of a water balance. From June to August, the obtained monthly Kc values varied between 1.10 and 1.26. Compared to the ETc100 treatment, 14.5 and 21.8% less water was applied in treatments ETc80 and ETc70, respectively. Despite this fact, no statistically significant differences were found among the treatments for rose production or quality. Finally, in the more irrigated roses, tight relationships between the stem water potential and vapor pressure deficit were obtained. The reported base-line equations can be used for predicting the optimum rose plant water status, depending on the environmental conditions. Overall, the reported results can be used for an efficient irritation schedule for rose crops under greenhouse conditions, using the local Kc and direct determinations of plant water status corrected for the evaporative demand.


1998 ◽  
Vol 123 (1) ◽  
pp. 150-155 ◽  
Author(s):  
R.A. Stern ◽  
M. Meron ◽  
A. Naor ◽  
R. Wallach ◽  
B. Bravdo ◽  
...  

The effect of fall irrigation level in `Mauritius' and `Floridian' lychee (Litchi chinensis Sonn.) on soil and plant water status, flowering intensity, and yield the following year was studied in a field during 2 consecutive years. At the end of the second vegetative flush after harvest (1 Oct. 1994 and 10 Oct. 1995), four irrigation treatments were initiated: 0.5, 0.25, 0.125, and 0 Class A pan evaporation coefficients designated 100%, 50%, 25%, and 0%. The three lower irrigation levels effectively stopped shoot growth, suggesting the 50% treatment to be the threshold for shoot growth cessation in both years. For both years, flowering intensity and yield in the 100% treatment were lower than those following the other three treatments. Soil and plant water-stress indicators responded to the water-stress irrigation treatments. However soil water-potential values were highly variable relative to plant water potentials. Stem water potential differed more markedly between treatments than leaf water potential. Midday stem water potential appeared to be the best water-stress indicator for irrigation control. Midday stem water potential in both years was correlated with midday vapor-pressure deficit, suggesting that the threshold for irrigation control should take into account evaporative demand.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 499B-499
Author(s):  
Ken Shackel ◽  
David Paige

In a number of tree crops, we have found that the water potential of lower canopy, nontranspiring leaves, measured with the pressure chamber at midday (midday stem water potential), is an excellent index of plant water stress and can be used for irrigation scheduling. Because stem water potential is typically much higher than transpiring leaf water potential, a lower pressure is required for the measurement, allowing us to design and build a lightweight device that could be easily operated by hand. The prototype was designed for pressures up to 2 MPa, which is sufficient for most irrigation conditions. A number of design features were incorporated into the sealing gland to eliminate the need for retightening during the pressurization process, reduce the amount of tissue external to the pressure chamber, and allow a greater visibility of the petiole. Identical values to those obtained with the standard, compressed nitrogen pressure chamber were obtained over the entire 2-MPa range, and the time required using either device under field conditions was the same (about 1 min per measurement). A number of alternative protocols were tested, and we found that even substantial recutting of the petiole had no influence on the measured water potential, contrary to popular belief. We also found that the same sample could be remeasured multiple times (five), with no net change in the water potential, allowing the measurement to be checked if necessary. This device should be of great utility in field irrigation management.


2005 ◽  
Vol 85 (4) ◽  
pp. 919-927 ◽  
Author(s):  
V. M. Glass ◽  
D. C. Percival ◽  
J. T.A. Proctor

A 2-yr field study examining the effect of soil moisture on plant water status, photosynthesis and gas exchange parameters in lowbush blueberry (Vaccinium angustifolium Ait.) was conducted at the Nova Scotia Wild Blueberry Institute (NSWBI), Debert, NS. Drought and irrigation treatments were applied over two years in either or both the vegetative and cropping years of production. Midday stem water potential values indicated that all treatments resulted in drought stress. Mean stem water potential values ranged from -1.41 to -1.45 MPa. Predawn stem water potentials in the vegetative growth season indicated that although some recharging and recovery of water loss occurred overnight, the drought-stressed plants did not fully return to pre-stress levels under the moisture-limiting conditions. Higher chlorophyll a and b levels were observed in the single-season drought treatment. Leaves of irrigated plants in both sprout and crop years had the highest stomatal density. There were no differences in photosynthetic rate (Pn) among treatments despite the lower stomatal conductance resulting from limited soil moisture. Key words: Photosynthesis, stomate, stem water potential


1997 ◽  
Vol 7 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Kenneth A. Shackel ◽  
H. Ahmadi ◽  
W. Biasi ◽  
R. Buchner ◽  
D. Goldhamer ◽  
...  

To be useful for indicating plant water needs, any measure of plant stress should be closely related to some of the known short- and medium-term plant stress responses, such as stomatal closure and reduced rates of expansive growth. Midday stem water potential has proven to be a useful index of stress in a number of fruit tree species. Day-to-day fluctuations in stem water potential under well-irrigated conditions are well correlated with midday vapor-pressure deficit, and, hence, a nonstressed baseline can be predicted. Measuring stem water potential helped explain the results of a 3-year deficit irrigation study in mature prunes, which showed that deficit irrigation could have either positive or negative impacts on tree productivity, depending on soil conditions. Mild to moderate water stress was economically beneficial. In almond, stem water potential was closely related to overall tree growth as measured by increases in trunk cross-sectional area. In cherry, stem water potential was correlated with leaf stomatal conductance and rates of shoot growth, with shoot growth essentially stopping once stem water potential dropped to between −1.5 to −1.7 MPa. In pear, fruit size and other fruit quality attributes (soluble solids, color) were all closely associated with stem water potential. In many of these field studies, systematic tree-to-tree differences in water status were large enough to obscure irrigation treatment effects. Hence, in the absence of a plant-based measure of water stress, it may be difficult to determine whether the lack of an irrigation treatment effect indicates the lack of a physiological response to plant water status, or rather is due to treatment ineffectiveness in influencing plant water status. These data indicate that stem water potential can be used to quantify stress reliably and guide irrigation decisions on a site-specific basis.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 510 ◽  
Author(s):  
Ana Belén Mira-García ◽  
Wenceslao Conejero ◽  
Juan Vera ◽  
María Carmen Ruiz-Sánchez

Physiological plant water status indicators are useful for managing precision irrigation in regions with limited water resources. The aim of this work was to evaluate the effect of shade netting on the diurnal and seasonal variations of several plant water status indicators in young lime trees (Citrus latifolia Tan., cv. Bearss), grown at the CEBAS-CSIC experimental station in Murcia, Spain. Stem water potential (Ψstem), leaf gas exchange (net photosynthesis (Pn) and stomatal conductance (gs)), and canopy temperature (Tc) were measured on representative days of winter and summer. The Ψstem daily pattern was quite similar in both seasons under both conditions. However, the circadian rhythm of leaf gas exchange was affected by shade conditions, especially in summer, when shaded leaves showed maximum gs values for a longer time, allowing higher net photosynthesis (37%). Canopy temperature behaved similarly in both conditions, nevertheless, lower values were recorded in open-air than in shaded trees in the two seasons. The canopy-to-air temperature difference (Tc − Ta), however, was lower in shaded trees during the daylight hours, indicating the higher degree of leaf cooling that was facilitated by high gs values. The possibility of continuously recording Tc makes it (or the proposed canopy thermal index, CTI) a promising index for precise irrigation scheduling. Shade netting was seen to favour gas exchange, suggesting that it may be considered alternative to open-air for use in semi-arid areas threatened by climate change.


2019 ◽  
Vol 62 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Julie N. Meyers ◽  
Julie N. Meyers ◽  
Isaya Kisekka ◽  
Shrinivasa K. Upadhyaya ◽  
Gabriela Karoline Michelon ◽  
...  

Abstract. Stem water potential (SWP) is a commonly used method for determining plant water status (PWS) but requires a significant amount of time and is tedious to measure. To eliminate the necessity for this fieldwork, artificial neural networks (ANNs) were designed to predict PWS using information that is easier to measure, such as leaf temperature and microclimatic variables including ambient air temperature, relative humidity, incident radiation, and soil water content. To collect these variables, leaf and soil water sensors were placed in a 1.6 ha almond orchard. The sensors were interconnected through a wireless mesh network, which allowed remote data access. SWP values were taken in the field at midday three times a week during the growing season. The ANNs were trained using the Levenberg-Marquardt algorithm with the data divided into 70% training, 15% validation, and 15% test data. Each network contained one hidden layer with one to three hidden neurons. For each unique combination of inputs, the network was retrained five times, and the best network was selected based on the lowest mean squared error for the test data. When compared with multiple linear regression models fitting the same data, the networks consistently resulted in better R2 values, and higher values may be achieved with further optimization. These results suggest that there is potential for machine learning techniques that use ANNs to model the relationship between environmental conditions and PWS, which may be used for predicting acceptable temperature differences from target SWP. Keywords: Almonds, Artificial neural network, Leaf monitor, Machine learning, Plant water status, Precision irrigation, Stem water potential.


Sign in / Sign up

Export Citation Format

Share Document