Effect of Soil Mineral N Levels and Inoculation on Nodulation, Nitrogenase Activity, and Grain Yield of Pigeon Pea 1

1979 ◽  
Vol 71 (3) ◽  
pp. 450-452 ◽  
Author(s):  
P. Quilt ◽  
R. C. Dalal
2001 ◽  
Vol 10 (3) ◽  
pp. 197-208 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
C. ERIKSSON ◽  
M. RÄKKÖLÄINEN

Cover crops can be used to reduce leaching and erosion, introduce variability into crop rotation and fix nitrogen (N) for use by the main crops. In Finland, undersowing is a suitable method for establishing cover crops in cereal cropping. The effect of annual undersowing on cereal grain yield and soil mineral N content in spring was studied at two sites. Red clover (Trifolium pratense L.), white clover (Trifolium repens L.), a mixture of red clover and meadow fescue (Festuca pratensis Huds.), and westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) were undersown in spring cereals in the same plots in six successive seasons, and their effects on cereal yield were estimated. Annual undersowing with clovers increased, and undersowing with westerwold ryegrass decreased cereal grain yields. The grain yield was only slightly lower with a mixture of red clover and meadow fescue than with red clover alone. Westerwold ryegrass did not affect soil mineral N content in spring and the increase attributable to clovers was small. The mixture of red clover and meadow fescue affected similarly to pure red clover. Soil fertility was not notably improved during six years of undersowing according to grain yield two years later.


Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 859 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Most soil nitrous oxide (N2O) emissions from rain-fed grain sorghum grown on sub-tropical Vertosols in north-west New South Wales, Australia, occur between fertiliser nitrogen (N) application at sowing and booting growth stage. At three experiments, we investigated the potential for deferring some (split-N) or all (delayed) fertiliser N until booting to mitigate N2O produced without compromising optimum crop yields. N products included urea, 3,4-dimethyl pyrazole phosphate (DMPP)-urea, polymer-coated urea (PCU) and N-(n-butyl)thiophosphoric triamide (NBPT)-urea. For a fourth experiment, the N fertiliser rate was varied according to pre-sowing soil mineral N stocks left by different previous crops. All experiments incorporated 15N mini-plots to determine whether delayed or split-N affected crop N uptake or residual soil N. Compared to urea applied at-sowing, delayed applications of urea, DMPP-urea or NBPT-urea at booting reduced the N2O emission factor (EF, percentage of applied N emitted) by 67–81%. Crop N uptake, grain yield and protein tended to be lower with delayed N than N at-sowing due to dry mid-season conditions. Much of the unused N remained in the soil at harvest. Split-N (33% sowing:67% booting) using urea, reduced EF by 59% compared to at-sowing urea, but maintained crop N uptake, grain yield and protein. Using DMPP-urea or PCU for the at-sowing portion of the split reduced EF by 84–86%. Grain yield was maintained using PCU, but was lower with DMPP-urea, which had more N in vegetative biomass. Using NBPT-urea for the in-crop portion of the split did not affect N2O emissions or crop productivity. Nitrogen budgeting to account for high pre-sowing soil mineral N nullified urea-induced N2O emissions. An N-budgeted, split-N strategy using urea offers the best balance between N2O mitigation, grain productivity and provision of a soil mineral N buffer against dry mid-season conditions. Split-N using DMPP-urea or PCU further enhanced N2O mitigation but there was no yield response to justify the extra expense.


2006 ◽  
Vol 46 (1) ◽  
pp. 59 ◽  
Author(s):  
R. H. Harris ◽  
M. J. Unkovich ◽  
J. Humphris

An experiment at 3 sites (Birchip, Elmore and Speed) in the northern Victorian cropping belt compared dry matter (DM) production of short-term (2 year) pastures and their contributions to soil mineral nitrogen (N) and subsequent wheat and barley production. The pastures included different varieties of subterranean clover, annual medic and lucerne, and these were compared with ryegrass-dominant pasture, which represented the experimental control. More productive legume pastures generally resulted in greater accumulation of soil mineral N at sowing of the following cereal at both Elmore and Speed; however, at Birchip, soil mineral N remained high under all treatments. At Elmore and Speed, significant (P<0.10) positive relationships were observed between available N at sowing and subsequent wheat and barley production. Cereal grain yield at Birchip was not associated with available N at sowing. The quantities of soil mineral N available at sowing (152 kg/ha) of the cereals were in excess of crop demand at Birchip. At Elmore, the soil mineral N supply (83 kg/ha) was below that required for wheat and barley to reach their water-limited potential yield (20 kg grain/mm of growing season rainfall). However, at Speed, the supply of soil mineral N (63 kg/ha) was sufficient to achieve the water-limited potential grain yield and to produce malting-grade barley, but not sufficient to elevate wheat grain protein concentrations above 11.5%. In environments with low soil N levels, the amount of residual N following short-term pastures increased the availability of N to following cereals. Whether this is sufficient to satisfy subsequent crop demand is largely determined by water availability in the year of cropping. In cases where available N is already high, short-term pasture phases may have little effect on increasing crop production.


2004 ◽  
Vol 84 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Terence P. McGonigle ◽  
Eric G. Beauchamp

We investigated corn grain yield responses to early-season soil mineral N and plant N content following application of a variety of manures in Eastern Canada. Liquid cattle, liquid swine, straw-bedded poultry, wood-bedded poultry, and solid cattle manures were each applied at 100, 200, and 300 kg N ha-1 prior to planting corn in a field experiment repeated 3 consecutive years. Additional treatments were urea applied at 50, 100, and 150 kg N ha-1, and liquid cattle and solid cattle manures at 200 kg N ha-1 with bedding amendments added to the field before manure spreading. Control plots received no manure, no urea, and no bedding amendment. Part of the ammonium-N applied in manures and a portion of that added as urea was volatilized or immobilized shortly after application and was not recovered as soil mineral N at planting. Across all treatments, soil mineral N in the top 30 cm on Jun. 10 in each year gave a better relationship to corn grain yield than soil mineral N measured at planting or on Jul. 10. Inclusion of data for plant N content on Jun. 10 or Jul. 10 did not improve the regressions. With remarkable consistency across all manure types, across manure rates, and over the three years, similar values for soil mineral N on Jun. 10 in plots given manure at planting had yields typically 0.5-1.0 t ha-1 greater than those in plots given urea at planting. This result indicates that mineralization of N from manure after the time of sidedress N and undetected as soil mineral N on Jun. 10 can contribute to yield increases of corn. Recent manure history should be considered when using soil tests for mineral N that are taken 3-4 wk after planting to calculate sidedress N fertilization. Key words: Sidedress, soil test, slurry, solid, cattle, swine, poultry


2011 ◽  
Vol 8 (8) ◽  
pp. 2341-2350 ◽  
Author(s):  
L. Song ◽  
X. Bao ◽  
X. Liu ◽  
Y. Zhang ◽  
P. Christie ◽  
...  

Abstract. Chinese grasslands are extensive natural ecosystems that comprise 40 % of the total land area of the country and are sensitive to N deposition. A field experiment with six N rates (0, 30, 60, 120, 240, and 480 kg N ha−1 yr−1) was conducted at Duolun, Inner Mongolia, during 2005 and 2010 to identify some effects of N addition on a temperate steppe ecosystem. The dominant plant species in the plots were divided into two categories, grasses and forbs, on the basis of species life forms. Enhanced N deposition, even as little as 30 kg N ha−1 yr−1 above ambient N deposition (16 kg N ha−1 yr−1), led to a decline in species richness. The cover of grasses increased with N addition rate but their species richness showed a weak change across N treatments. Both species richness and cover of forbs declined strongly with increasing N deposition as shown by linear regression analysis (p < 0.05). Increasing N deposition elevated aboveground production of grasses but lowered aboveground biomass of forbs. Plant N concentration, plant δ15N and soil mineral N increased with N addition, showing positive relationships between plant δ15N and N concentration, soil mineral N and/or applied N rate. The cessation of N application in the 480 kg N ha−1 yr−1 treatment in 2009 and 2010 led to a slight recovery of the forb species richness relative to total cover and aboveground biomass, coinciding with reduced plant N concentration and soil mineral N. The results show N deposition-induced changes in soil N transformations and plant N assimilation that are closely related to changes in species composition and biomass accumulation in this temperate steppe ecosystem.


2021 ◽  
Author(s):  
Jie Luo ◽  
Lukas Beule ◽  
Guodong Shao ◽  
Edzo Veldkamp ◽  
Marife D. Corre

&lt;p&gt;Monoculture croplands are considered as major sources of the greenhouse gas, nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O). The conversion of monoculture croplands to agroforestry systems, e.g., integrating trees within croplands, is an essential climate-smart management system through extra C sequestration and can potentially mitigate N&lt;sub&gt;2&lt;/sub&gt;O emissions. So far, no study has systematically compared gross rates of N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake between cropland agroforestry and monoculture. In this study, we used an in-situ &lt;sup&gt;15&lt;/sup&gt;N&lt;sub&gt;2&lt;/sub&gt;O pool dilution technique to simultaneously measure gross N&lt;sub&gt;2&lt;/sub&gt;O emission and uptake over two consecutive growing seasons (2018 - 2019) at three sites in Germany: two sites were on Phaeozem and Cambisol soils with each site having a pair of cropland agroforestry and monoculture systems, and an additional site with only monoculture on an Arenosol soil prone to high nitrate leaching. Our results showed that cropland agroforestry had lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and higher gross N&lt;sub&gt;2&lt;/sub&gt;O uptake than in monoculture at the site with Phaeozem soil (P &amp;#8804; 0.018 &amp;#8211; 0.025) and did not differ in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake with cropland monoculture at the site with Cambisol soil (P &amp;#8805; 0.36). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were positively correlated with soil mineral N and heterotrophic respiration which, in turn, were correlated with soil temperature, and with water-filled pore space (WFPS) (r = 0.24 &amp;#8210; 0.54, P &lt; 0.01). Gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were also negatively correlated with nosZ clade I gene abundance (involved in N&lt;sub&gt;2&lt;/sub&gt;O-to-N&lt;sub&gt;2&lt;/sub&gt; reduction, r = -0.20, P &lt; 0.05). These findings showed that across sites and management systems changes in gross N&lt;sub&gt;2&lt;/sub&gt;O emissions were driven by changes in substrate availability and aeration condition (i.e., soil mineral N, C availability, and WFPS), which also influenced denitrification gene abundance. The strong regression values between gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and net N&lt;sub&gt;2&lt;/sub&gt;O emissions (R&lt;sup&gt;2 &lt;/sup&gt;&amp;#8805; 0.96, P &lt; 0.001) indicated that gross N&lt;sub&gt;2&lt;/sub&gt;O emissions largely drove net soil N&lt;sub&gt;2&lt;/sub&gt;O emissions. Across sites and management systems, annual soil gross N&lt;sub&gt;2&lt;/sub&gt;O emissions and uptake were controlled by clay contents which, in turn, correlated with indices of soil fertility (i.e., effective cation exchange capacity, total N, and C/N ratio) (Spearman rank&amp;#8217;s rho = -0.76 &amp;#8211; 0.86, P &amp;#8804; 0.05). The lower gross N&lt;sub&gt;2&lt;/sub&gt;O emissions from the agroforestry tree rows at two sites indicated the potential of agroforestry in reducing soil N&lt;sub&gt;2&lt;/sub&gt;O emissions, supporting the need for temperate cropland agroforestry to be considered in greenhouse gas mitigation policies.&lt;/p&gt;


2019 ◽  
Vol 56 (2) ◽  
pp. 239-254 ◽  
Author(s):  
Tanka P. Kandel ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
Alexandre C. Rocateli

AbstractThe aim of this study was to compare the effects of cowpea green manure and inorganic nitrogen (N) fertilizers on yields of winter wheat and soil emissions of nitrous oxide (N2O). The comparisons included cowpea grown solely as green manure where all biomass was terminated at maturity by tillage, summer fallow treatments with 90 kg N ha−1 as urea (90-N), and no fertilization (control) at planting of winter wheat. Fluxes of N2O were measured by closed chamber methods after soil incorporation of cowpea in autumn (October–November) and harvesting of winter wheat in summer (June–August). Growth and yields of winter wheat and N concentrations in grain and straw were also measured. Cowpea produced 9.5 Mg ha−1 shoot biomass with 253 kg N ha−1 at termination. Although soil moisture was favorable for denitrification after soil incorporation of cowpea biomass, low concentrations of soil mineral N restricted emissions of N2O from cowpea treatment. However, increased concentrations of soil mineral N and large rainfall-induced emissions were recorded from the cowpea treatment during summer. Growth of winter wheat, yield, and grain N concentrations were lowest in response to cowpea treatment and highest in 90-N treatment. In conclusion, late terminated cowpea may reduce yield of winter wheat and increase emissions of N2O outside of wheat growing seasons due to poor synchronization of N mineralization from cowpea biomass with N-demand of winter wheat.


2017 ◽  
Vol 34 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Adria L. Fernandez ◽  
Karina P. Fabrizzi ◽  
Nicole E. Tautges ◽  
John A. Lamb ◽  
Craig C. Sheaffer

AbstractAlfalfa is recommended as a rotational crop in corn production, due to its ability to contribute to soil nitrogen (N) and carbon (C) stocks through atmospheric N2fixation and above- and belowground biomass production. However, there is little information on how alfalfa management practices affect contributions to soil and subsequent corn crop yields, and research has not been targeted to organic systems. A study was conducted to determine the effects of alfalfa stand age, cutting frequency and biomass removal on soil C and N status and corn yields at three organically managed Minnesota locations. In one experiment, five cutting treatments were applied in nine environments: two, three and four cuts with biomass removal; three cuts with biomass remaining in place; and a no-cut control. In the other experiment, corn was planted following 1-, 2-, 3- or 4-year-old alfalfa stands and a no-alfalfa control. Yield was measured in the subsequent corn crop. In the cutting experiment, the two- and three-cut treatments with biomass removal reduced soil mineral N by 12.6 and 11.5%, respectively, compared with the control. Potentially mineralizable N (PMN) was not generally affected by cutting treatments. The three-cut no-removal increased potentially mineralizable C by 17% compared with the other treatments, but lowered soil total C in two environments, suggesting a priming effect in which addition of alfalfa biomass stimulated microbial mineralization of native soil C. Although both yields and soil mineral N tended to be higher in treatments where biomass remained in place, this advantage was small and inconsistent, indicating that farmers need not forgo hay harvest to obtain the rotational benefits of an alfalfa stand. The lack of overall correlation between corn grain yields and mineral and potentially mineralizable N suggests that alfalfa N contribution was not the driver of the yield increase in the no-removal treatments. Alfalfa stand age had inconsistent effects on fall-incorporated N and soil N and C parameters. Beyond the first year, increased alfalfa stand age did not increase soil mineral N or PMN. However, corn yield increased following older stands. Yields were 29, 77 and 90% higher following first-, second- and third-year alfalfa stands than the no-alfalfa control, respectively. This indicates that alfalfa may benefit succeeding corn through mechanisms other than N contribution, potentially including P solubilization and weed suppression. These effects have been less studied than N credits, but are of high value in organic cropping systems.


Sign in / Sign up

Export Citation Format

Share Document