Relation of yield of corn (Zea mays L.) to nitrogen in shoot and soil during the early-season following manure application to field plots

2004 ◽  
Vol 84 (4) ◽  
pp. 481-490 ◽  
Author(s):  
Terence P. McGonigle ◽  
Eric G. Beauchamp

We investigated corn grain yield responses to early-season soil mineral N and plant N content following application of a variety of manures in Eastern Canada. Liquid cattle, liquid swine, straw-bedded poultry, wood-bedded poultry, and solid cattle manures were each applied at 100, 200, and 300 kg N ha-1 prior to planting corn in a field experiment repeated 3 consecutive years. Additional treatments were urea applied at 50, 100, and 150 kg N ha-1, and liquid cattle and solid cattle manures at 200 kg N ha-1 with bedding amendments added to the field before manure spreading. Control plots received no manure, no urea, and no bedding amendment. Part of the ammonium-N applied in manures and a portion of that added as urea was volatilized or immobilized shortly after application and was not recovered as soil mineral N at planting. Across all treatments, soil mineral N in the top 30 cm on Jun. 10 in each year gave a better relationship to corn grain yield than soil mineral N measured at planting or on Jul. 10. Inclusion of data for plant N content on Jun. 10 or Jul. 10 did not improve the regressions. With remarkable consistency across all manure types, across manure rates, and over the three years, similar values for soil mineral N on Jun. 10 in plots given manure at planting had yields typically 0.5-1.0 t ha-1 greater than those in plots given urea at planting. This result indicates that mineralization of N from manure after the time of sidedress N and undetected as soil mineral N on Jun. 10 can contribute to yield increases of corn. Recent manure history should be considered when using soil tests for mineral N that are taken 3-4 wk after planting to calculate sidedress N fertilization. Key words: Sidedress, soil test, slurry, solid, cattle, swine, poultry

2001 ◽  
Vol 10 (3) ◽  
pp. 197-208 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
C. ERIKSSON ◽  
M. RÄKKÖLÄINEN

Cover crops can be used to reduce leaching and erosion, introduce variability into crop rotation and fix nitrogen (N) for use by the main crops. In Finland, undersowing is a suitable method for establishing cover crops in cereal cropping. The effect of annual undersowing on cereal grain yield and soil mineral N content in spring was studied at two sites. Red clover (Trifolium pratense L.), white clover (Trifolium repens L.), a mixture of red clover and meadow fescue (Festuca pratensis Huds.), and westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) were undersown in spring cereals in the same plots in six successive seasons, and their effects on cereal yield were estimated. Annual undersowing with clovers increased, and undersowing with westerwold ryegrass decreased cereal grain yields. The grain yield was only slightly lower with a mixture of red clover and meadow fescue than with red clover alone. Westerwold ryegrass did not affect soil mineral N content in spring and the increase attributable to clovers was small. The mixture of red clover and meadow fescue affected similarly to pure red clover. Soil fertility was not notably improved during six years of undersowing according to grain yield two years later.


2017 ◽  
Vol 34 (2) ◽  
pp. 144-154 ◽  
Author(s):  
Adria L. Fernandez ◽  
Karina P. Fabrizzi ◽  
Nicole E. Tautges ◽  
John A. Lamb ◽  
Craig C. Sheaffer

AbstractAlfalfa is recommended as a rotational crop in corn production, due to its ability to contribute to soil nitrogen (N) and carbon (C) stocks through atmospheric N2fixation and above- and belowground biomass production. However, there is little information on how alfalfa management practices affect contributions to soil and subsequent corn crop yields, and research has not been targeted to organic systems. A study was conducted to determine the effects of alfalfa stand age, cutting frequency and biomass removal on soil C and N status and corn yields at three organically managed Minnesota locations. In one experiment, five cutting treatments were applied in nine environments: two, three and four cuts with biomass removal; three cuts with biomass remaining in place; and a no-cut control. In the other experiment, corn was planted following 1-, 2-, 3- or 4-year-old alfalfa stands and a no-alfalfa control. Yield was measured in the subsequent corn crop. In the cutting experiment, the two- and three-cut treatments with biomass removal reduced soil mineral N by 12.6 and 11.5%, respectively, compared with the control. Potentially mineralizable N (PMN) was not generally affected by cutting treatments. The three-cut no-removal increased potentially mineralizable C by 17% compared with the other treatments, but lowered soil total C in two environments, suggesting a priming effect in which addition of alfalfa biomass stimulated microbial mineralization of native soil C. Although both yields and soil mineral N tended to be higher in treatments where biomass remained in place, this advantage was small and inconsistent, indicating that farmers need not forgo hay harvest to obtain the rotational benefits of an alfalfa stand. The lack of overall correlation between corn grain yields and mineral and potentially mineralizable N suggests that alfalfa N contribution was not the driver of the yield increase in the no-removal treatments. Alfalfa stand age had inconsistent effects on fall-incorporated N and soil N and C parameters. Beyond the first year, increased alfalfa stand age did not increase soil mineral N or PMN. However, corn yield increased following older stands. Yields were 29, 77 and 90% higher following first-, second- and third-year alfalfa stands than the no-alfalfa control, respectively. This indicates that alfalfa may benefit succeeding corn through mechanisms other than N contribution, potentially including P solubilization and weed suppression. These effects have been less studied than N credits, but are of high value in organic cropping systems.


1999 ◽  
Vol 133 (3) ◽  
pp. 263-274 ◽  
Author(s):  
J. VOS

In four field experiments, the effects of single nitrogen (N) applications at planting on yield and nitrogen uptake of potato (Solanum tuberosum L.) was compared with two or three split applications. The total amount of N applied was an experimental factor in three of the experiments. In two experiments, sequential observations were made during the growing season. Generally, splitting applications (up to 58 days after emergence) did not affect dry matter (DM) yield at maturity and tended to result in slightly lower DM concentration of tubers, whereas it slightly improved the utilization of nitrogen. Maximum haulm dry weight and N content were lower when less nitrogen was applied during the first 50 days after emergence (DAE). The crops absorbed little extra nitrogen after 60 DAE (except when three applications were given). Soil mineral N (0–60 cm) during the first month reflected the pattern of N application with values up to 27 g/m2 N. After 60 DAE, soil mineral N was always around 2–5 g/m2. The efficiency of N utilization, i.e. the ratio of the N content of the crop to total N available (initial soil mineral N+deposition+net mineralization) was 0·45 for unfertilized controls. The utilization of fertilizer N (i.e. the apparent N recovery) was generally somewhat improved by split applications, but declined with the total amount of N applied (range 0·48–0·72). N utilization and its complement, possible N loss, were similar for both experiments with sequential observations. Separate analysis of the movement of Br− indicated that some nitrate can be washed below 60 cm soil depth due to dispersion during rainfall. The current study showed that the time when N application can be adjusted to meet estimated requirements extends to (at least) 60 days after emergence. That period of time can be exploited to match the N application to the actual crop requirement as it changes during that period.


2021 ◽  
pp. 108434
Author(s):  
Bruno Chaves ◽  
Marciel Redin ◽  
Sandro José Giacomini ◽  
Raquel Schmatz ◽  
Joël Léonard ◽  
...  

2015 ◽  
Vol 90 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Kasaina Sitraka Andrianarisoa ◽  
Lydie Dufour ◽  
Séverine Bienaimé ◽  
Bernd Zeller ◽  
Christian Dupraz

1998 ◽  
Vol 7 (5-6) ◽  
pp. 553-567 ◽  
Author(s):  
H. KÄNKÄNEN ◽  
A. KANGAS ◽  
T. MELA

Seven field trials at four research sites were carried out to study the effect of incorporation time of different plant materials on soil mineral N content during two successive seasons. Annual hairy vetch (Vicia villosa Roth), red clover (Trifolium pratense L.), westerwold ryegrass (Lolium multiflorum Lam. var. westerwoldicum) and straw residues of N-fertilized spring barley (Hordeum vulgare) were incorporated into the soil by ploughing in early September, late October and the following May, and by reduced tillage in May. Delaying incorporation of the green manure crop in autumn lessened the risk of N leaching. The higher the crop N and soil NO3-N content, the greater the risk of leaching. Incorporation in the following spring, which lessened the risk of N leaching as compared with early autumn ploughing, often had an adverse effect on the growth of the succeeding crop. After spring barley, the NO3-N content of the soil tended to be high, but the timing of incorporation did not have a marked effect on soil N. With exceptionally high soil mineral N content, N leaching was best inhibited by growing westerwold ryegrass in the first experimental year. ;


1999 ◽  
Vol 8 (4-5) ◽  
pp. 423-440 ◽  
Author(s):  
L. PIETOLA ◽  
R. TANNI ◽  
P. ELONEN

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation was studied in 1993–1996 on loamy clay soil. Carry over effect of the N fertilization rates (0–180 kg ha-1 ) was evaluated in 1997. N fertilization rate for the best grain/seed yield (120–150 kg ha-1 ) was not affected by PGRs. The seed and N yields of oilseed rape were improved most frequently by recommended use of PGR. The yields of oats were increased in 1995–96. Even though PGR effectively shortened the plant height of spring wheat, the grain yield increased only in 1995. N yield of wheat grains was not increased. Response of fodder barley to PGR was insignificant or even negative in 1995. The data suggest that PGRs may decrease some N leaching at high N rates by improving N uptake by grain/seeds, if the yield is improved. The carryover study showed that in soils with no N fertilization, as well as in soils of high N rates, N uptake was higher than in soils with moderate N fertilization (60–90 kg ha-1 ), independent of PGRs. According to soil mineral N contents, N leaching risk is significant (15–35 kg ha-1 ) only after dry and warm late seasons. After a favourable season of high yields, the N rates did not significantly affect soil mineral N contents. ;


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2307
Author(s):  
Anna Nogalska ◽  
Aleksandra Załuszniewska

A long-term (six year) field experiment was conducted in Poland to evaluate the effect of meat and bone meal (MBM), applied without or with mineral nitrogen (N) fertilizer, on crop yields, N content and uptake by plants, and soil mineral N balance. Five treatments were compared: MBM applied at 1.0, 1.5, and 2.0 Mg ha−1, inorganic NPK, and zero-fert check. Mineral N accounted for 100% of the total N rate (158 kg ha−1) in the NPK treatment and 50%, 25%, and 0% in MBM treatments. The yield of silage maize supplied with MBM was comparable with that of plants fertilized with NPK at 74 Mg ha−1 herbage (30% DM) over two years on average. The yields of winter wheat and winter oilseed rape were highest in the NPK treatment (8.9 Mg ha−1 grain and 3.14 Mg ha−1 seeds on average). The addition of 25% and 50% of mineral N to MBM had no influence on the yields of the tested crops. The N content of plants fertilized with MBM was satisfactory (higher than in the zero-fert treatment), and considerable differences were found between years of the study within crop species. Soil mineral N content was determined by N uptake by plants rather than the proportion of mineral N in the total N rate. Nitrogen utilization by plants was highest in the NPK treatment (58%) and in the treatment where mineral N accounted for 50% of the total N rate (48%).


Sign in / Sign up

Export Citation Format

Share Document