Evaluating the Impact of a Trait for Increased Specific Leaf Area on Wheat Yields Using a Crop Simulation Model

2003 ◽  
Vol 95 (1) ◽  
pp. 10 ◽  
Author(s):  
Senthold Asseng ◽  
Neil C. Turner ◽  
Tina Botwright ◽  
Anthony G. Condon
2018 ◽  
Author(s):  
Florie Gosseau ◽  
Nicolas Blanchet ◽  
Didier Varès ◽  
Philippe Burger ◽  
Didier Campergue ◽  
...  

AbstractHeliaphen is an outdoor pot platform designed for high-throughput phenotyping. It allows automated management of drought scenarios and plant monitoring during the whole plant cycle. A robot moving between plants growing in 15L pots monitors plant water status and phenotypes plant or leaf morphology, from which we can compute more complex traits such as the response of leaf expansion (LE) or plant transpiration (TR) to water deficit. Here, we illustrate the platform capabilities for sunflower on two practical cases: a genetic and genomics study for the response to drought of yield-related traits and a simulation study, where we use measured parameters as inputs for a crop simulation model. For the genetic study, classical measurements of thousand-kernel weight (TKW) were done on a sunflower bi-parental population under water stress and control conditions managed automatically. The association study using the TKW drought-response highlighted five genetic markers. A complementary transcriptomic experiment identified closeby candidate genes differentially expressed in the parental backgrounds in drought conditions. For the simulation study, we used the SUNFLO crop simulation model to assess the impact of two traits measured on the platform (LE and TR) on crop yield in a large population of environments. We conducted simulations in 42 contrasted locations across Europe and 21 years of climate data. We defined the pattern of abiotic stresses occurring at this continental scale and identified ideotypes (i.e. genotypes with specific traits values) that are more adapted to specific environment types. This study exemplifies how phenotyping platforms can help with the identification of the genetic architecture of complex response traits and the estimation of eco-physiological model parameters in order to define ideotypes adapted to different environmental conditions.


Author(s):  
Jéssica Sousa Paixão ◽  
Derblai Casaroli ◽  
João Carlos Rocha dos Anjos ◽  
José Alves Júnior ◽  
Adão Wagner Pêgo Evangelista ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document