Planting Date and Fluopyram Seed Treatment Effect on Soybean Sudden Death Syndrome and Seed Yield

2017 ◽  
Vol 109 (6) ◽  
pp. 2570-2578 ◽  
Author(s):  
Steven K. Vosberg ◽  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley
Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1735-1743 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Albert U. Tenuta ◽  
Daren S. Mueller

A 2-year study was conducted in Illinois, Indiana, Iowa, and Ontario in 2013 and 2014 to determine the effects of planting date, seed treatment, and cultivar on plant population, sudden death syndrome (SDS) caused by Fusarium virguliforme, and grain yield of soybean (Glycine max). Soybean crops were planted from late April to mid-June at approximately 15-day intervals, for a total of three to four plantings per experiment. For each planting date, two cultivars differing in SDS susceptibility were planted with and without fluopyram seed treatment. Mid-May plantings resulted in higher disease index compared with other planting dates in two experiments, early June plantings in three, and the remaining six experiments were not affected by planting date. Soil temperature at planting was not linked to SDS development. Root rot was greater in May plantings for most experiments. Resistant cultivars had significantly lower disease index than the susceptible cultivar in 54.5% of the experiments. Fluopyram reduced disease severity and protected against yield reductions caused by SDS in nearly all plantings and cultivars, with a maximum yield response of 1,142 kg/ha. Plant population was reduced by fluopyram seed treatment and early plantings in some experiments; however, grain yield was not affected by these reductions. Yields of plots planted in mid-June were up to 29.8% less than yields of plots planted in early May. The lack of correlation between early planting date and SDS severity observed in this study indicates that farmers do not have to delay planting in the Midwest to prevent yield loss due to SDS; cultivar selection combined with fluopyram seed treatment can reduce SDS in early-planted soybean (late April to mid May).


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1339-1350 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Martin I. Chilvers ◽  
Albert U. Tenuta ◽  
...  

The effect of fungicides on severity of sudden death syndrome (SDS; caused by Fusarium virguliforme), plant establishment, and soybean yield was evaluated in 12 field experiments conducted in Illinois, Indiana, Iowa, Michigan, and Ontario in 2013 and 2014. Two soybean cultivars that differed in susceptibility to SDS were planted in fields with a history of SDS or with artificial augmentation of F. virguliforme. Efficacy of seed, in-furrow, and foliar-applied fungicides was assessed. SDS levels varied across locations and years. Fluopyram applied on the seed or in-furrow reduced foliar disease index maximum up to 95% in 5 of the 12 experiments. In three experiments with significant (P < 0.10) treatment effect, fluopyram seed treatment improved yields up to 11% compared with the base seed treatment comprising prothioconazole + penflufen + metalaxyl and clothianidin + Bacillus firmus. Meta-analysis also indicated that the fluopyram seed treatment and in-furrow application were effective at reducing SDS and increasing yield relative to the control; however, the baseline disease influenced the yield and disease response to fungicide treatments. Treatment effect was not significant when disease pressure was low. The concentration of F. virguliforme DNA in soybean roots, measured by a specific real-time quantitative polymerase chain reaction assay, was not different among fungicide treatments in 9 of 10 experiments. Moderately resistant cultivars had less disease than susceptible cultivars, indicating that resistant cultivars in combination with fluopyram seed treatment or in-furrow application could provide effective management of SDS.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2152-2157 ◽  
Author(s):  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

The impact of today’s optimal planting dates on sudden death syndrome (SDS) (caused by Fusarium virguliforme) development and soybean yield loss are not yet well understood. Field trials established in Hancock, Wisconsin during 2013 and 2014 investigated interactions between planting date and cultivar on SDS development and soybean yield. In 2013, disease index (DX) levels differed among cultivars, but results showed no difference between the 6 May and 24 May planting dates. Significantly lower DX levels were observed for the 17 June date. Greatest yields were found in the 6 May planting date, and yield losses were 720 (17%), 770 (20%), and 400 kg ha−1 (12%) for the 6 May, 24 May, 17 and June planting dates, respectively. In 2014, cultivars again differed for DX, but results showed highest DX levels in the 5 May planting date, with little disease observed in the 22 May and 11 June dates. Yield losses were 400 (12%) and 270 kg ha−1 (9%) for the 5 May and 22 May dates, respectively, but no difference was found in the 11 June date. Despite the most symptom development, these results suggest early May planting coupled with appropriate cultivar selection provides maximum yield potential and profitability in Wisconsin.


Author(s):  
Eric Adee ◽  
C. R. Little ◽  
I. A. Ciampitti

Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Amy M. Baetsen-Young ◽  
Scott M. Swinton ◽  
Martin I. Chilvers

Soybean (Glycine max) sudden death syndrome (SDS), caused by Fusarium virguliforme, is a key limitation in reaching soybean yield potential, stemming from incomplete disease management through cultural practices and partial host resistance. A fungicidal seed treatment was released in 2014 with the active ingredient fluopyram and was the first chemical management strategy to reduce soybean yield loss stemming from SDS. Although farm level studies have found fluopyram profitable, we were curious to discover whether fluopyram would be beneficial nationally if targeted to soybean fields at risk for SDS yield loss. To estimate economic benefits of fluopyram adoption in SDS at-risk acres, in the light of U.S. public research and outreach from a privately developed product, we applied an economic surplus approach, calculating ex ante net benefits from 2018 to 2032. Through this framework of logistic adoption of fluopyram for alleviation of SDS-associated yield losses, we projected a net benefit of $5.8 billion over 15 years, considering the costs of public seed treatment research and future extension communication. Although the sensitivity analysis indicates that overall net benefits from fluopyram adoption on SDS at-risk acres are highly dependent upon the market price of soybean, the incidence of SDS, the adoption path, and ceiling of this seed treatment, the net benefits still exceeded $407 million in the worst-case scenario.


2019 ◽  
Author(s):  
Yuba R. Kandel ◽  
Daren S. Mueller ◽  
Adam J> Sisson ◽  
Eric A. Adee ◽  
Jason P. Bond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document