scholarly journals Effect of Planting Date, Seed Treatment, and Cultivar on Plant Population, Sudden Death Syndrome, and Yield of Soybean

Plant Disease ◽  
2016 ◽  
Vol 100 (8) ◽  
pp. 1735-1743 ◽  
Author(s):  
Yuba R. Kandel ◽  
Kiersten A. Wise ◽  
Carl A. Bradley ◽  
Albert U. Tenuta ◽  
Daren S. Mueller

A 2-year study was conducted in Illinois, Indiana, Iowa, and Ontario in 2013 and 2014 to determine the effects of planting date, seed treatment, and cultivar on plant population, sudden death syndrome (SDS) caused by Fusarium virguliforme, and grain yield of soybean (Glycine max). Soybean crops were planted from late April to mid-June at approximately 15-day intervals, for a total of three to four plantings per experiment. For each planting date, two cultivars differing in SDS susceptibility were planted with and without fluopyram seed treatment. Mid-May plantings resulted in higher disease index compared with other planting dates in two experiments, early June plantings in three, and the remaining six experiments were not affected by planting date. Soil temperature at planting was not linked to SDS development. Root rot was greater in May plantings for most experiments. Resistant cultivars had significantly lower disease index than the susceptible cultivar in 54.5% of the experiments. Fluopyram reduced disease severity and protected against yield reductions caused by SDS in nearly all plantings and cultivars, with a maximum yield response of 1,142 kg/ha. Plant population was reduced by fluopyram seed treatment and early plantings in some experiments; however, grain yield was not affected by these reductions. Yields of plots planted in mid-June were up to 29.8% less than yields of plots planted in early May. The lack of correlation between early planting date and SDS severity observed in this study indicates that farmers do not have to delay planting in the Midwest to prevent yield loss due to SDS; cultivar selection combined with fluopyram seed treatment can reduce SDS in early-planted soybean (late April to mid May).

Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2152-2157 ◽  
Author(s):  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

The impact of today’s optimal planting dates on sudden death syndrome (SDS) (caused by Fusarium virguliforme) development and soybean yield loss are not yet well understood. Field trials established in Hancock, Wisconsin during 2013 and 2014 investigated interactions between planting date and cultivar on SDS development and soybean yield. In 2013, disease index (DX) levels differed among cultivars, but results showed no difference between the 6 May and 24 May planting dates. Significantly lower DX levels were observed for the 17 June date. Greatest yields were found in the 6 May planting date, and yield losses were 720 (17%), 770 (20%), and 400 kg ha−1 (12%) for the 6 May, 24 May, 17 and June planting dates, respectively. In 2014, cultivars again differed for DX, but results showed highest DX levels in the 5 May planting date, with little disease observed in the 22 May and 11 June dates. Yield losses were 400 (12%) and 270 kg ha−1 (9%) for the 5 May and 22 May dates, respectively, but no difference was found in the 11 June date. Despite the most symptom development, these results suggest early May planting coupled with appropriate cultivar selection provides maximum yield potential and profitability in Wisconsin.


2017 ◽  
Vol 109 (6) ◽  
pp. 2570-2578 ◽  
Author(s):  
Steven K. Vosberg ◽  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eder Eujácio da Silva ◽  
Fábio Henrique Rojo Baio ◽  
Daniel Fernando Kolling ◽  
Renato Schneider Júnior ◽  
Alex Rogers Aguiar Zanin ◽  
...  

AbstractSowing density is one of the most influential factors affecting corn yield. Here, we tested the hypothesis that, according to soil attributes, maximum corn productivity can be attained by varying the seed population. Specifically, our objectives were to identify the soil attributes that affect grain yield, in order to generate a model to define the optimum sowing rate as a function of the attributes identified, and determine which vegetative growth indices can be used to predict yield most accurately. The experiment was conducted in Chapadão do Céu-GO in 2018 and 2019 at two different locations. Corn was sown as the second crop after the soybean harvest. The hybrids used were AG 8700 PRO3 and FS 401 PW, which have similar characteristics and an average 135-day cropping cycle. Tested sowing rates were 50, 55, 60, and 65 thousand seeds ha−1. Soil attributes evaluated included pH, calcium, magnesium, phosphorus, potassium, organic matter, clay content, cation exchange capacity, and base saturation. Additionally, we measured the correlation between the different vegetative growth indices and yield. Linear correlations were obtained through Pearson’s correlation network, followed by path analysis for the selection of cause and effect variables, which formed the decision trees to estimate yield and seeding density. Magnesium and apparent electrical conductivity (ECa) were the most important soil attributes for determining sowing density. Thus, the plant population should be 56,000 plants ha−1 to attain maximum yield at ECa values > 7.44 mS m−1. In addition, the plant population should be 64,800 plants ha−1 at values < 7.44 mS m−1 when magnesium levels are greater than 0.13 g kg−1, and 57,210 plants ha−1 when magnesium content is lower. Trial validation showed that the decision tree effectively predicted optimum plant population under the local experimental conditions, where yield did not significantly differ among populations.


Author(s):  
Eric Adee ◽  
C. R. Little ◽  
I. A. Ciampitti

1991 ◽  
Vol 42 (5) ◽  
pp. 701 ◽  
Author(s):  
WK Anderson ◽  
J Barclay

Three wheat cultivars were grown at five seed levels in 15 experiments under rain-fed conditions in the central wheatbelt of Western Australia in the 1986, 1987 and 1988 seasons. Guthea (released in 1982, 87 cm tall) required less seed and fewer plants on average to achieve its maximum grain yield than either Gamenya (released in 1960, 82 cm) or Aroona (released in 1981, 73 cm). At sites where Gutha was best adapted its optimum population was 65 plants m-2, about half of the population required by the other two cultivars. At sites where Aroona was best adapted its optimum population was 110 plants m-2. Gutha produced larger ears, especially at small populations, but did not increase kernel numbers per m2 in response to increased populations as much as Aroona. It is suggested that when a new cultivar is released its optimum plant population should be assessed in the area for which it is recommended.


Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Amy M. Baetsen-Young ◽  
Scott M. Swinton ◽  
Martin I. Chilvers

Soybean (Glycine max) sudden death syndrome (SDS), caused by Fusarium virguliforme, is a key limitation in reaching soybean yield potential, stemming from incomplete disease management through cultural practices and partial host resistance. A fungicidal seed treatment was released in 2014 with the active ingredient fluopyram and was the first chemical management strategy to reduce soybean yield loss stemming from SDS. Although farm level studies have found fluopyram profitable, we were curious to discover whether fluopyram would be beneficial nationally if targeted to soybean fields at risk for SDS yield loss. To estimate economic benefits of fluopyram adoption in SDS at-risk acres, in the light of U.S. public research and outreach from a privately developed product, we applied an economic surplus approach, calculating ex ante net benefits from 2018 to 2032. Through this framework of logistic adoption of fluopyram for alleviation of SDS-associated yield losses, we projected a net benefit of $5.8 billion over 15 years, considering the costs of public seed treatment research and future extension communication. Although the sensitivity analysis indicates that overall net benefits from fluopyram adoption on SDS at-risk acres are highly dependent upon the market price of soybean, the incidence of SDS, the adoption path, and ceiling of this seed treatment, the net benefits still exceeded $407 million in the worst-case scenario.


Sign in / Sign up

Export Citation Format

Share Document