Streaming Urea Ammonium Nitrate with or without Enhanced Efficiency Products Impacted Corn Yields, Ammonia, and Nitrous Oxide Emissions

2018 ◽  
Vol 110 (2) ◽  
pp. 444-454 ◽  
Author(s):  
A. L. Woodley ◽  
C. F. Drury ◽  
X. M. Yang ◽  
W. D. Reynolds ◽  
W. Calder ◽  
...  
1982 ◽  
Vol 11 (1) ◽  
pp. 78-81 ◽  
Author(s):  
A. R. Mosier ◽  
G. L. Hutchinson ◽  
B. R. Sabey ◽  
J. Baxter

2016 ◽  
Vol 563-564 ◽  
pp. 576-586 ◽  
Author(s):  
M.A. Harty ◽  
P.J. Forrestal ◽  
C.J. Watson ◽  
K.L. McGeough ◽  
R. Carolan ◽  
...  

2016 ◽  
Vol 55 (1) ◽  
pp. 1-9 ◽  
Author(s):  
B.P. Hyde ◽  
P.J. Forrestal ◽  
M.M.R. Jahangir ◽  
M. Ryan ◽  
A.F. Fanning ◽  
...  

Abstract Nitrous oxide (N2O) is an important and potent greenhouse gas (GHG). Although application of nitrogen (N) fertiliser is a feature of many grazing systems, limited data is available on N2O emissions in grassland as a result of the interaction between urine, dung and fertiliser N. A small plot study was conducted to identify the individual and interactive effects of calcium ammonium nitrate (CAN) fertiliser, dung and urine. Application of CAN with dung and urine significantly increased the mass of N2O-N emission. Importantly, the sum of N2O-N emitted from dung and CAN applied individually approximated the emission from dung and CAN fertiliser applied together, that is, an additive effect. However, in the case of urine and CAN applied together, the emission was more than double the sum of the emission from urine and CAN fertiliser applied individually, that is, a multiplicative effect. Nitrous oxide emissions from dung, urine and fertiliser N are typically derived individually and these individual emission estimates are aggregated to produce estimates of N2O emission. The presented findings have important implications for how individual emission factors are aggregated; they suggest that the multiplicative effect of the addition of CAN fertiliser to urine patches needs to be taken into account to refine the estimation of N2O emissions from grazing grasslands.


2017 ◽  
Vol 56 (1) ◽  
pp. 54-64 ◽  
Author(s):  
D.J. Krol ◽  
E. Minet ◽  
P.J. Forrestal ◽  
G.J. Lanigan ◽  
O. Mathieu ◽  
...  

AbstractPasture-based livestock agriculture is a major source of greenhouse gas (GHG) nitrous oxide (N2O). Although a body of research is available on the effect of urine patch N or fertiliser N on N2O emissions, limited data is available on the effect of fertiliser N applied to patches of urinary N, which can cover up to a fifth of the yearly grazed area. This study investigated whether the sum of N2O emissions from urine and a range of N fertilisers, calcium ammonium nitrate (CAN) or urea ± urease inhibitor ± nitrification inhibitor, applied alone (disaggregated and re-aggregated) approximated the N2O emission of urine and fertiliser N applied together (aggregated). Application of fertiliser to urine patches did not significantly increase either the cumulative yearly N2O emissions or the N2O emission factor in comparison to urine and fertiliser applied separately with the emissions re-aggregated. However, there was a consistent trend for approximately 20% underestimation of N2O loss generated from fertiliser and urine applied separately when compared to figures generated when urine and fertiliser were applied together. N2O emission factors from fertilisers were 0.02%, 0.06%, 0.17% and 0.25% from urea ± dicyandiamide (DCD), urea + N-(n-butyl) thiophosphoric triamide (NBPT) + DCD, urea + NBPT and urea, respectively, while the emission factor for urine alone was 0.33%. Calcium ammonium nitrate and urea did not interact differently with urine even when the urea included DCD. N2O losses could be reduced by switching from CAN to urea-based fertilisers.


2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document