Evaluation of Adjuvants on Flumioxazin Efficacy for Postemergence Annual Bluegrass and Residual Smooth Crabgrass Control

2014 ◽  
Vol 11 (1) ◽  
pp. ATS-2013-0034-RS
Author(s):  
Thomas V. Reed ◽  
Patrick E. McCullough ◽  
Tim Grey
Keyword(s):  
itsrj ◽  
2021 ◽  
Author(s):  
Alyssa Cain ◽  
Emily Braithwaite ◽  
Brian McDonald ◽  
Alec Kowalewski ◽  
Matthew Elmore

Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 402-406 ◽  
Author(s):  
B. J. Horvath ◽  
J. M. Vargas

Anthracnose basal rot (ABR) is a serious disease of turfgrasses that is caused by the pathogen Colletotrichum graminicola. The relationships of isolates causing ABR on turfgrasses to those causing disease on important crop hosts (maize, sorghum) remain unresolved. Genetic variation among isolates from annual bluegrass, creeping bentgrass, maize, and sorghum was evaluated based on host origin and geographic origin. Isozymes were used to estimate the genetic variation of the isolates. Five enzyme systems comprising 16 alleles from 5 loci were used. Allele frequencies, genetic distance, and linkage disequilibrium values were calculated for isolates based on both host and geographic origin. Isolates from creeping bentgrass and annual bluegrass were the most closely related based on Nei's genetic distance, while isolates from maize and sorghum were the most distantly related, consistent with their known species-level relationship. Isolates from annual bluegrass and creeping bentgrass had different genetic distances to isolates from both maize and sorghum. Annual bluegrass isolates from different geographic regions had the smallest genetic distance values observed in this study, indicating a very close relationship regardless of geographic origin. Based on these data, it appears that host origin, not geographic origin, plays a more important role in the genetic diversity of these fungi.


2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.


2017 ◽  
Vol 31 (3) ◽  
pp. 470-476 ◽  
Author(s):  
James T. Brosnan ◽  
Jose J. Vargas ◽  
Gregory K. Breeden ◽  
Sarah L. Boggess ◽  
Margaret A. Staton ◽  
...  

Methiozolin is an isoxazoline herbicide being investigated for selective POST annual bluegrass control in managed turfgrass. Research was conducted to evaluate methiozolin efficacy for controlling two annual bluegrass phenotypes with target-site resistance to photosystem II (PSII) or enolpyruvylshikimate-3-phosphate synthase (EPSPS)-inhibiting herbicides (i.e., glyphosate), as well as phenotypes with multiple resistance to microtubule and EPSPS or PSII and acetolactate synthase (ALS)-inhibiting herbicides. All resistant phenotypes were established in glasshouse culture along with a known herbicide-susceptible control and treated with methiozolin at 0, 125, 250, 500, 1000, 2000, 4000, or 8000 g ai ha−1. Methiozolin effectively controlled annual bluegrass with target-site resistance to inhibitors of EPSPS, PSII, as well as multiple resistance to EPSPS and microtubule inhibitors. Methiozolin rates required to reduce aboveground biomass of these resistant phenotypes 50% (GR50 values) were not significantly different from the susceptible control, ranging from 159 to 421 g ha−1. A phenotype with target-site resistance to PSII and ALS inhibitors was less sensitive to methiozolin (GR50=862 g ha−1) than a susceptible phenotype (GR50=423 g ha−1). Our findings indicate that methiozolin is an effective option for controlling select annual bluegrass phenotypes with target-site resistance to several herbicides.


1979 ◽  
Vol 59 (2) ◽  
pp. 469-473 ◽  
Author(s):  
R. G. INGRATTA ◽  
G. R. STEPHENSON ◽  
C. M. SWITZER

Optimum top growth of annual bluegrass (Pao annua L.) and Kentucky bluegrass (Poa pratensis L.) was obtained at 24/12 °C day/night temperature regime in controlled environment studies. The tolerance of seedling Kentucky bluegrass to linuron [3-(3,4-dichlorophenyl)-1)methylurea] appeared to be greatest at this temperature regime when photoperiods were 16 h in length. A granular formulation of linuron gave excellent control of annual bluegrass in Kentucky bluegrass turf at 6.7 kg/ha when applied postemergence. At this rate, all culitivars of Kentucky bluegrass tested, with the exception of Fylking, were tolerant to linuron as a granular formulation. After application of linuron at 3.4–6.7 kg/ha, phytotoxic residues remained in the soil at sufficient levels to injure seedling Kentucky bluegrass for up to 3 mo.


2020 ◽  
Vol 112 (5) ◽  
pp. 3411-3417 ◽  
Author(s):  
James W. Hempfling ◽  
James A. Murphy ◽  
Bruce B. Clarke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document