Evaluation of Oriental Mustard (Brassica juncea) Seed Meal for Weed Suppression in Turf

2010 ◽  
Vol 24 (4) ◽  
pp. 440-445 ◽  
Author(s):  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
Carl E. Sams ◽  
Xi Xiong

Oriental mustard seed meal (MSM), a byproduct generated by pressing the seed for oil, exhibits herbicidal properties. In turfgrass, soil fumigants such as methyl bromide are used to control weeds prior to renovation of turf. Environmental concerns have resulted in deregistration of methyl bromide, prompting the need for alternatives. The objective of this research was to determine the effect of MSM on the establishment of selected turfgrass weeds as well as inhibitory effects on establishment of desirable turfgrasses. Greenhouse experiments were conducted in 2006 and 2007 at the University of Missouri. MSM was amended in soil at 0, 1,350 (low), 2,350 (medium), and 3,360 kg ha−1(high) concentrations. Weed species included annual bluegrass, large crabgrass, buckhorn plantain, white clover, and common chickweed. Turfgrass species included: Rembrandt tall fescue, Evening Shade perennial rye, and Riviera bermudagrass. All species were seeded into soil amended with MSM and either tarped or left untarped. All treatments were compared to dazomet (392 kg ha−1), a synthetic standard. Plant counts and biomass of all species were recorded 4 wk after seeding. Overall, tarped treatments suppressed weed emergence 27 to 50% more compared to untarped treatments, except for large crabgrass. High rates of MSM suppressed emergence of all weeds ≥ 63%. Compared to the untreated control, the density of buckhorn plantain, white clover, and common chickweed was reduced by ≥ 42% at low rates of MSM. Biomass of buckhorn plantain, annual bluegrass, common chickweed, white clover, and large crabgrass was reduced from 37 to 99% at high rates of MSM. MSM at high rates reduced stand counts of tall fescue and perennial ryegrass up to 81% and 77% respectively, compared to the untreated control. Regardless of MSM rates or tarping, suppression of common bermudagrass emergence did not exceed 30%; tarped treatments actually increased bermudagrass emergence by 22%. The biomass for tall fescue, perennial ryegrass, and bermudagrass was reduced by 85, 68, and 10%, respectively, at high rates of MSM. For tall fescue, MSM at all rates strongly suppressed seed germination by 7 d after planting (DAP) (up to 100%), with additional germination observed through 14 DAP, but not thereafter. In both trials, dazomet completely suppressed emergence of all weeds. MSM appears to suppress emergence and growth of a number of weeds common in turf, with potential selectivity for bermudagrass.

1998 ◽  
Vol 12 (3) ◽  
pp. 436-440 ◽  
Author(s):  
Matthew J. Fagerness ◽  
Donald Penner

An experimental turfgrass growth regulator, V-10029, was compared with trinexapac-ethyl, a growth regulator used commonly on highly maintained turfgrasses, to evaluate growth suppression patterns and suppression of seedhead formation; the latter was evaluated on turfgrass species and annual bluegrass, a weedy species that appeared and developed seedheads in tall fescue. Plugs of creeping red fescue, Kentucky bluegrass, perennial ryegrass, and creeping bentgrass were taken from the field into a greenhouse. V-10029 at three rates (0.015, 0.029, and 0.059 kg/ha) was compared to an untreated control and trinexapac-ethyl at a label rate (0.382 kg/ha for perennial ryegrass and 0.287 kg/ha for the other four species). Of the eight replications for each treatment, four were not mowed for the purpose of evaluating suppression of seedhead formation, and four were used for weekly clipping collection to evaluate growth suppression. Compared to the untreated control, V-10029 at all three applied rates caused significant seedhead suppression in both tall fescue infested with annual bluegrass (> 90%) and perennial ryegrass (50 to 80%). Trinexapac-ethyl was not as effective, causing seedhead suppression levels of 57% in annual bluegrass found in tall fescue and 43% in perennial ryegrass. V-10029 caused unacceptable levels of discoloration (> 20%) in all turfgrass species, and discoloration increased with increasing rates of application. Patterns of growth suppression for tall fescue, Kentucky bluegrass, and perennial ryegrass, in response to V-10029 at all rates and to trinexapac-ethyl, were similar on a percent of suppression basis. Growth of creeping bentgrass was suppressed by V-10029 only at high rates. In contrast, creeping red fescue was significantly injured by V-10029 at all rates. The greatest growth suppression, in response for all treatments, occurred 2 to 3 wk after application. The effect of trinexapac-ethyl dissipated after 4 wk, while V-10029 was effective until 5 to 7 wk after treatment. Observed effects of V-10029 were consistent with its activity as an ALS-inhibiting herbicide and, therefore, as a Class D turfgrass growth regulator.


1967 ◽  
Vol 68 (1) ◽  
pp. 11-21 ◽  
Author(s):  
R. C. Grimes ◽  
B. R. Watkin ◽  
J. R. Gallagher

1. An experiment was conducted in which lambs grazed on pastures of cocksfoot, ryegrass and tall fescue grown with and without white clover, as well as on pastures of pure white clover.


2010 ◽  
Vol 20 (4) ◽  
pp. 764-771 ◽  
Author(s):  
Sanjeev K. Bangarwa ◽  
Jason K. Norsworthy ◽  
Ronald L. Rainey ◽  
Edward E. Gbur

The phase-out of methyl bromide required an effective and economically viable alternative for weed management in polyethylene-mulched tomato (Solanum lycopersicum). A field experiment was conducted to compare economics of tomato production associated with crucifer (Brassicaceae) cover crops under low-density polyethylene mulch (LDPE) and virtually impermeable film (VIF) mulch with a standard treatment of methyl bromide:chloropicrin (67:33) at 350 lb/acre. Three crucifer cover crops, ‘Seventop’ turnip (Brassica rapa), ‘Pacific Gold’ oriental mustard (Brassica juncea), and Caliente [a blend of brown mustard (B. juncea) and white mustard (Sinapis alba)], were evaluated in combination with hand-weeding. Because of marginal weed control from crucifer cover crops, hand-weeding cost in all cover crop plots, regardless of mulch type, increased from $380.54/acre to $489.10/acre over that in methyl bromide plots. However, total weed management costs in the untreated control and cover crops with LDPE treatments were $17.82/acre to $111.33/acre lower than methyl bromide. Because of mulch expenses, VIF mulch increased the total weed management cost by $328.16/acre over LDPE mulch in the untreated control and cover crop treatments. Because of equivalent marketable yield, gross returns ($21,040.43/acre) were identical in all treatments. Preplant fumigation with methyl bromide provided $6260.90/acre of net returns in tomato production. The untreated control, ‘Seventop’ turnip, ‘Pacific Gold’ oriental mustard, and Caliente mustard under LDPE treatment were $54/acre, $54/acre, $98/acre, and $147/acre more profitable, respectively, than methyl bromide. However, in all other treatments under VIF, net returns relative to methyl bromide were reduced from $181/acre to $274/acre. Therefore, regardless of soil amendment with crucifer cover crops, hand-weeding can serve as an economically viable alternative to methyl bromide for weed control in LDPE-mulched tomato production, depending on the nature and level of pest infestation, labor availability, and wages.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


2020 ◽  
Vol 34 (6) ◽  
pp. 818-823 ◽  
Author(s):  
John M. Peppers ◽  
Clebson G. Gonçalves ◽  
J. Scott McElroy

AbstractPinoxaden is a POST acetyl coenzyme A carboxylase (ACCase) inhibitor in the phenylpyrazolin chemical family and is labelled for turfgrass use at broadcast rates of 35.5 to 71 g ai ha−1 and spot spray rates of 156 to 310 g ai ha−1. A greenhouse rate-response study was conducted to characterize the efficacy of pinoxaden against common grassy weeds. Weed species examined in this study were yellow foxtail, southern sandbur, annual bluegrass, roughstalk bluegrass, large crabgrass, dallisgrass, bahiagrass, goosegrass, and perennial ryegrass. Nonlinear regressions were modelled to determine visible injury rates (the application rate at which 50% of the weed species were injured and the 90% [I90] rate) and weight reduction rates (the application rate at which there was a 50% reduction in fresh weight and 90% reduction [WR90]) for each weed species. Only annual bluegrass, bahiagrass, and goosegrass had visible injury I90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Annual bluegrass, bahiagrass, southern sandbur, and goosegrass all had WR90 values greater than the maximum labelled spot spray rate of 310 g ai ha−1. Results from this study indicate that the evaluated weed species can be ranked, according to visible injury I90 values, from most to least susceptible: perennial ryegrass > yellow foxtail > dallisgrass > large crabgrass > southern sandbur > roughstalk bluegrass > bahiagrass > goosegrass > annual bluegrass.


2017 ◽  
Vol 57 (7) ◽  
pp. 1210 ◽  
Author(s):  
C. D. Lewis ◽  
C. K. M. Ho ◽  
B. R. Cullen ◽  
B. Malcolm

Diversifying farm activities can reduce the business risk of agricultural production. The aim of the present study was to investigate the effect of diversifying the types of dairy pastures sown on (1) the average seasonal growth rate (kg DM/ha/day) of pasture and (2) the variability of seasonal growth rate of pasture over time by diversifying the types of pastures grown on a dairy farm. This approach is similar to the approach used to assess the diversification of annual cropping activities, although repeated harvest of pasture by grazing animals and the seasonality of pasture DM production complicates the question. The question investigated was ‘How does substituting chicory (Cichorium intybus L.) or tall fescue (Festuca arundinaceae Schreb.) monocultures for a perennial ryegrass (Lolium perenne L.)–white clover (Trifolium repens L.) pasture in increasing proportions affect (1) the average growth rate (kg DM/ha.day) of pasture and (2) the variability of growth rate of pasture in each season?’. The biophysical model DairyMod was used to simulate 30 years growth of a mixed sward of perennial ryegrass and white clover and monocultures of chicory and tall fescue for two rain-fed locations in the high-rainfall zone of southern Australia. Including chicory in the pasture base had the potential to increase pasture growth rate during the summer–early autumn period compared with growing perennial ryegrass–white clover alone. This increase in pasture growth rate increased variability, and reduced growth rates in late autumn–winter and spring. The simulated growth rates of tall fescue and perennial ryegrass were strongly correlated in all seasons; hence, tall fescue did not reduce the variability of total DM. Further analysis would include price correlations and variability and consider the whole-farm implications. The analysis presented here for the high-rainfall zone showed that introducing alternative forages may have benefits in terms of increasing pasture growth rates at critical times of the production year, but the variability of the growth rate was not reduced.


2012 ◽  
Vol 63 (10) ◽  
pp. 1026 ◽  
Author(s):  
K. N. Tozer ◽  
E. Minneé ◽  
C. A. Cameron

Yellow bristle grass (Setaria pumila) and summer grass (Digitaria sanguinalis) are summer-active annual grass weeds which infest temperate dairy pastures. A study was undertaken over 2 years to compare hand-sown yellow bristle and summer grass establishment, survival, and seed production in pastures grazed by dairy cows and based on (i) tetraploid perennial ryegrass (Lolium perenne), (ii) tetraploid perennial ryegrass and white clover (Trifolium repens), and (iii) tall fescue (Festuca arundinacea) and white clover, to determine which pasture type offered the greatest resistance to these grass weeds. Ingress of grass weeds was similar in all three pasture types. Total dry matter production was similar for all pasture types for the first year and lower in tall fescue + clover than perennial ryegrass pasture in the second year. All pasture types had a similar distribution of microsite types (bare ground ± canopy, basal cover ± canopy) in both years. The annual grass weeds were most prevalent in bare ground + canopy microsites, which were also the most frequent of the four microsite types. In the first year, <5% of microsites were occupied within 2 months of sowing, whereas in the second year, microsite occupation remained >13% for all assessments. In the first year, panicle production of yellow bristle and summer grass was similar (averaging 4.1 panicles plant–1); in the second year, panicle production was greater for summer grass (0.80 v. 0.16 panicles plant–1, respectively). Where present, these annual grass weeds are likely to spread in dryland dairy pastures sown with either perennial ryegrass or tall fescue. Variability in their panicle production between years shows how their impact on pasture performance and consequent need for control measures will also vary from year to year.


itsrj ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 166
Author(s):  
Xiaowei Pan ◽  
Daniel T. Earlywine ◽  
Reid J. Smeda ◽  
Travis C. Teuton ◽  
James T. English ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document