Wetland Water Budgets

Author(s):  
Jennifer Mitchell ◽  
James W. Jawitz
Keyword(s):  
2016 ◽  
Author(s):  
G. Richard Whittecar ◽  
◽  
W. Lee Daniels ◽  
Tess Wynn Thompson ◽  
Zacharias Agioutantis ◽  
...  

2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


2019 ◽  
Author(s):  
Prashanta Bajracharya ◽  
◽  
Shaleen Jain ◽  
Dan Coker ◽  
Sean M.C. Smith

2005 ◽  
Vol 2005 (10) ◽  
pp. 5577-5590
Author(s):  
Loretta Mokry ◽  
Darrel Andrews ◽  
Woody Frossard ◽  
Mark Perkins ◽  
Alan H. Plummer

2021 ◽  
Vol 598 ◽  
pp. 126178
Author(s):  
P. Spellman ◽  
A.B.C. Pritt ◽  
N. Salazar

2020 ◽  
Author(s):  
Laura Beecraft ◽  
Rebecca Rooney

AbstractWetland biofilms were exposed to the herbicide glyphosate via in situ field exposures and controlled microcosm experiments to measure bioconcentration and metabolism of glyphosate by biofilm organisms. Glyphosate concentrations in biofilms were orders of magnitude higher than the surrounding water, bioconcentration factors averaged 835 and 199 in field- and lab-exposed biofilms, respectively. Glyphosate in water where it had been detected in biofilms at field-exposed sites ranged from below detection (<0.001 ppm) up to 0.13 ppm. Glyphosate bioconcentration in biofilms was inversely proportional to levels in the surrounding water, and the retention kinetics were similar to both adsorption and enzymatic models. Microorganisms present in both the water and biofilms metabolized glyphosate to its primary breakdown product aminomethyl phosphonic acid (AMPA), with increased rates of breakdown in and around the biofilms. Photosynthetic efficiency of the algae within the biofilms was not affected by 24 h glyphosate controlled exposures. Our results demonstrate the role of biofilms in improving wetland water quality by removing contaminants like glyphosate, but also as a potential exposure route to higher trophic levels via consumption. Due to bioconcentration of pesticides, exposure risk to organisms consuming or living in biofilms may be much higher than indicated by concentrations in ambient water samples.


Sign in / Sign up

Export Citation Format

Share Document