viral communities
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 121)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Fang Qin ◽  
Sen Du ◽  
Zefeng Zhang ◽  
Hanqi Ying ◽  
Ying Wu ◽  
...  

AbstractViruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed. However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as major ecological agents that can infect certain key bacterial groups.


2022 ◽  
Author(s):  
Rebecca French ◽  
Justine Charon ◽  
Callum Le Lay ◽  
Chris Muller ◽  
Edward C Holmes

Although water borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metagenomic next generation sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land use impact, ranging from pristine to urban. From this we identified 504 putative virus species, of which 97% were novel. Many of the novel viruses were highly divergent, and likely included a new subfamily within the Parvoviridae. We identified at least 63 virus species that may infect vertebrates, most likely fish and water birds, from the Astroviridae, Birnaviridae, Parvoviridae and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n=150) and pristine sites (n=119), and more viruses were shared between the urban and farming sites (n=76) than between the pristine and farming or urban sites (n=24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Overall, our study shows that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanization on water systems.


mSystems ◽  
2022 ◽  
Author(s):  
Jiulong Zhao ◽  
Hongmei Jing ◽  
Zengmeng Wang ◽  
Long Wang ◽  
Huahua Jian ◽  
...  

The Mariana Trench harbors a substantial number of infective viral particles. However, very little is known about the identity, survival strategy, and potential functions of viruses in the trench sediments.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Anastasiia Rusanova ◽  
Victor Fedorchuk ◽  
Stepan Toshchakov ◽  
Svetlana Dubiley ◽  
Dmitry Sutormin

Sponges are remarkable holobionts harboring extremely diverse microbial and viral communities. However, the interactions between the components within holobionts and between a holobiont and environment are largely unknown, especially for polar organisms. To investigate possible interactions within and between sponge-associated communities, we probed the microbiomes and viromes of cold-water sympatric sponges Isodictya palmata (n = 2), Halichondria panicea (n = 3), and Halichondria sitiens (n = 3) by 16S and shotgun metagenomics. We showed that the bacterial and viral communities associated with these White Sea sponges are species-specific and different from the surrounding water. Extensive mining of bacterial antiphage defense systems in the metagenomes revealed a variety of defense mechanisms. The abundance of defense systems was comparable in the metagenomes of the sponges and the surrounding water, thus distinguishing the White Sea sponges from those inhabiting the tropical seas. We developed a network-based approach for the combined analysis of CRISPR-spacers and protospacers. Using this approach, we showed that the virus–host interactions within the sponge-associated community are typically more abundant (three out of four interactions studied) than the inter-community interactions. Additionally, we detected the occurrence of viral exchanges between the communities. Our work provides the first insight into the metagenomics of the three cold-water sponge species from the White Sea and paves the way for a comprehensive analysis of the interactions between microbial communities and associated viruses.


2021 ◽  
Author(s):  
Anneliek M ter Horst ◽  
Jane D Fudyma ◽  
Aurelie Bak ◽  
Min Sook Hwang ◽  
Christian Santos-Medellin ◽  
...  

Wild plants can suffer devastating diseases, experience asymptomatic, persistent infections, and serve as reservoirs for viruses of agricultural crops, yet we have a limited understanding of the natural plant virosphere. To access representatives of locally and globally distinct wild plants and investigate their viral diversity, we extracted and sequenced dsRNA from leaves from 16 healthy oak and conifer trees in the UC Davis Arboretum (Davis, California). From de novo assemblies, we recovered 389 RNA-dependent RNA polymerase (RdRp) gene sequences from 384 putative viral species, and a further 580 putative viral contigs were identified with virus prediction software followed by manual confirmation of virus annotation. Based on similarity to known viruses, most recovered viruses were predicted to infect plants or fungi, with the highest diversity and abundance observed in the Totiviridae and Mitoviridae families. Phyllosphere viral community composition differed significantly by host plant phylogeny, suggesting the potential for host-specific viromes. The phyllosphere viral community of one oak tree differed substantially from other oak viral communities and contained a greater proportion of putative mycoviral sequences, potentially due to the tree's more advanced senescence at the time of sampling. These results suggest that oaks and conifers harbor a vast diversity of viruses with as-yet unknown roles in plant health and phyllosphere microbial ecology.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 894
Author(s):  
Dini Hu ◽  
John P. Giesy ◽  
Min Guo ◽  
Wai Kin Ung ◽  
Yijun Kong ◽  
...  

Compositions of microbial communities associated with blooms of algae in a storage reservoir in Macau, China were investigated between 2013 and 2016. Algae were enumerated by visible light microscopy. Profiles of organisms in water were examined by 16S rRNA sequences and viral metagenomics, based on next generation sequencing. Results of 16S rRNA sequencing indicated that majority of the identified organisms were bacteria closely related to Proteobacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes, and Actinobacteria. Metagenomics sequences demonstrated that the dominant virus was Phycodnavirus, accounting for 70% of the total population. Patterns of relative numbers of bacteria in the microbial community and their temporal changes were determined through alpha diversity indices, principal coordinates analysis (PCoA), relative abundance, and visualized by Venn diagrams. Ways in which the bacterial and viral communities are influenced by various water-related variables were elucidated based on redundancy analysis (RDA). Relationships of the relative numbers of bacteria with trophic status in a reservoir used for drinking water in Macau, provided insight into associations of Phycodnavirus and Proteobacteria with changes in blooms of algae.


2021 ◽  
Vol 1 ◽  
Author(s):  
Chandrashekara Kyathanahalli ◽  
Madeline Snedden ◽  
Emmet Hirsch

Although the bacterial microbiota of various compartments (e.g. vagina, amniotic fluid, and placenta) have been studied in pregnancy, there has been far less emphasis on normal and pathological viral communities. Cumulative evidence shows the presence of a number of apathogenic viruses in various tissues of healthy people, including pregnant individuals. What role, if any, these viruses play in human physiology is unknown. Anelloviruses (family Anelloviridae) are circular, single-stranded DNA viruses commonly detected with high prevalence in vertebrate hosts, including primates. Humans are nearly always colonized with at least 1 of 3 anellovirus subtypes, namely Alphatorquevirus (torque teno virus, TTV), Betatorquevirus (torque teno midi virus, TTMDV), and Gammatorquevirus (torque teno mini virus, TTMV). In healthy pregnant people, the prototype anellovirus, TTV, has been found in maternal and (variably) fetal blood, amniotic fluid, cervical and vaginal secretions, breast milk, and saliva. Nonetheless, the relevance of human anelloviruses in pregnancy and labor is unclear. There is evidence suggesting a link between anellovirus colonization and preterm birth. In this review, we discuss what is known about this family of commensal viruses in health and disease, and specifically the roles they might play during pregnancy and in the timing of delivery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kotakonda Arunasri ◽  
Gumpili Sai Prashanthi ◽  
Mudit Tyagi ◽  
Rajeev R. Pappuru ◽  
Sisinthy Shivaji

The virome of ocular fluids is naive. The results of this study highlight the virome in the vitreous fluid of the eye of individuals without any ocular infection and compare it with the virome of the vitreous fluid of individuals with retinitis. A total of 1,016,037 viral reads were generated from 25 vitreous fluid samples comprising control and post-fever retinitis (PFR) samples. The top 10 viral families in the vitreous fluids comprised of Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae, Poxviridae, Iridoviridae, Podoviridae, Retroviridae, Baculoviridae, and Flaviviridae. Principal coordinate analysis and heat map analysis clearly discriminated the virome of the vitreous fluid of the controls from that of the PFR virome. The abundance of 10 viral genera increased significantly in the vitreous fluid virome of the post-fever retinitis group compared with the control group. Genus Lymphocryptovirus, comprising the human pathogen Epstein-Barr virus (EBV) that is also implicated in ocular infections was significantly abundant in eight out of the nine vitreous fluid viromes of post-fever retinitis group samples compared with the control viromes. Human viruses, such as Hepacivirus, Circovirus, and Kobuvirus, were also significantly increased in abundance in the vitreous fluid viromes of post-fever retinitis group samples compared with the control viromes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis and the network analysis depicted an increase in the immune response by the host in the post-fever retinitis group compared with the control group. All together, the results of the study indicate changes in the virome in the vitreous fluid of patients with the post-fever retinitis group compared to the control group.


Author(s):  
Sergio Guajardo-Leiva ◽  
Fernando Santos ◽  
Oscar Salgado ◽  
Christophe Regeard ◽  
Laurent Quillet ◽  
...  

Hot springs harbor microbial communities dominated by a limited variety of microorganisms and, as such, have become a model for studying community ecology and understanding how biotic and abiotic interactions shape their structure. Viruses in hot springs are shown to be ubiquitous, numerous, and active components of these communities.


2021 ◽  
Author(s):  
Yao Xu ◽  
Jingyi Jiang ◽  
Xiaoju Lin ◽  
Wangpeng Shi ◽  
Chuan Cao

Locusts and grasshoppers are one of the most dangerous agricultural pests. Environmentally benign microbial pesticides are increasingly desirable for controlling locust outbreaks in fragile ecosystems. Here we use metagenomic sequencing to profile the rich viral communities in 34 grasshopper species and report 322 viruses, including 202 novel species. Most of the identified viruses are related to other insect viruses and some are targeted by antiviral RNAi pathway, indicating they infect grasshoppers. Some plant/fungi/vertebrate associated viruses are also abundant in our samples. Our analysis of relationships between host and virus phylogenies suggests that the composition of viromes is closely allied with host evolution, and there is significant phylogenetic relatedness between grasshoppers and viruses from Lispiviridae, Partitiviridae, Orthomyxoviridae, Virgaviridae and Flaviviridae. Overall, this study is a thorough exploration of viruses in grasshoppers and provide an essential evolutionary and ecological context for host-virus interaction in Acridoidea.


Sign in / Sign up

Export Citation Format

Share Document