Particle Size Sorting of Proglacial Eolian Materials

1970 ◽  
Vol 34 (6) ◽  
pp. 920-924 ◽  
Author(s):  
D. P. Franzmeier
Keyword(s):  
2017 ◽  
Vol 89 ◽  
pp. 69-76 ◽  
Author(s):  
M. Adachi ◽  
H. Moroka ◽  
H. Kawamoto ◽  
S. Wakabayashi ◽  
T. Hoshino

Clay Minerals ◽  
1981 ◽  
Vol 16 (4) ◽  
pp. 333-345 ◽  
Author(s):  
D.A. Spears ◽  
M.A. Amin

AbstractEleven shales and fourteen turbidite sandstones from the Mam Tor Beds were analysed chemically and by XRD. The ratio of kaolinite to illite plus mixed-layer clay was higher in the sandstones than in the shales, size fractions demonstrating that this ratio decreased as the grain size decreased. Shales more basinal in character than those of the Mam Tor Beds contain more illite and mixed-layer clay and less kaolinite and it is suggested that there was a lateral variation in clay mineralogy with distance from the shore line due to particle size sorting and that the character of the clay mineral fraction was retained as the turbidity current transported sediment from a nearshore environment deeper into the basin. Support for this model was obtained from the geochemistry which showed that the sandstone matrix differed compositionally from the shales. Systematic variations occurred in the turbidite sandstones but not in the shales which are therefore considered to be non-turbiditic. Only minor mineralogical changes appear to have occurred during diagenesis.


2022 ◽  
Vol 35 (1) ◽  
pp. 04021115
Author(s):  
Hiroyuki Kawamoto ◽  
Hirofumi Morooka ◽  
Hiroyuki Nozaki

1991 ◽  
Vol 66 (2) ◽  
pp. 149-160 ◽  
Author(s):  
A.D. Rosato ◽  
Y. Lan ◽  
D.T. Wang

2006 ◽  
Vol 2006 (01) ◽  
pp. P01012-P01012 ◽  
Author(s):  
Sergey Kapishnikov ◽  
Vasiliy Kantsler ◽  
Victor Steinberg

Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Sign in / Sign up

Export Citation Format

Share Document