Determination of 15N-Labeled Dinitrogen and Nitrous Oxide with Triple-Collector Mass Spectrometers

1984 ◽  
Vol 48 (3) ◽  
pp. 690-692 ◽  
Author(s):  
R. L. Mulvaney
Author(s):  
Y. Taniguchi ◽  
E. Nakazawa ◽  
S. Taya

Imaging energy filters can add new information to electron microscopic images with respect to energy-axis, so-called electron spectroscopic imaging (ESI). Recently, many good results have been reported using this imaging technique. ESI also allows high-contrast observation of unstained biological samples, becoming a trend of the field of morphology. We manufactured a new type of energy filter as a trial production. This energy filter consists of two magnets, and we call γ-filter since the trajectory of electrons shows ‘γ’-shape inside the filter. We evaluated the new energyγ-filter TEM with the γ-filter.Figure 1 shows schematic view of the electron optics of the γ-type energy filter. For the determination of the electron-optics of the γ-type energy filter, we used the TRIO (Third Order Ion Optics) program which has been developed for the design of high resolution mass spectrometers. The TRIO takes the extended fringing fields (EFF) into consideration. EFF makes it difficult to design magnetic energy filters with magnetic sector fields.


1993 ◽  
Vol 58 (8) ◽  
pp. 1821-1831 ◽  
Author(s):  
Jaroslav Jambor ◽  
Tomáš Javorek

The macrophorous hydrophobic sorbent Amberlite XAD-2 proved to be well suited to the preconcentration of minority amounts of Al, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Ti and V in the form of their chelates with organic reagents. From among 14 reagents tested, 8-hydroxyquinoline and diethyldithiocarbamate appeared most suitable for the quantitative sorption up to level of 1 μg l-1 of analyte. Emission spectrometry served as the analytical finish; the nitrous oxide-acetylene flame, electric arc and inductively coupled argon plasma were chosen according to the nature of the element. The procedure is convenient for the determination of the minority analytes in waters


1972 ◽  
Vol 77 (10) ◽  
pp. 1987-1990 ◽  
Author(s):  
Alfred O. Nier ◽  
J. L. Hayden ◽  
J. B. French ◽  
N. M. Reid

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Leonard Nitzsche ◽  
Jens Goldschmidt ◽  
Armin Lambrecht ◽  
Jürgen Wöllenstein

Abstract A dual comb spectrometer is used as gas sensor for the parallel detection of nitrous oxide (N2O) and carbon monoxide (CO). These gases have overlapping absorption features in the mid-infrared (MIR) at a wavelength of 4.6 µm. With a spectra acquisition rate of 10 Hz, concentrations of 50 ppm N2O and 30 ppm CO are monitored with a relative precision of 6 × 10 − 3 6\times {10^{-3}} and 3 × 10 − 3 3\times {10^{-3}} respectively. The limit of detections are 91 ppb for N2O and 50 ppb for CO for an integration time of 25 s. The system exhibits a linear sensitivity from 2 ppm to 100 ppm with coefficients of determination of 0.99998 for N2O and 0.99996 for CO.


Sign in / Sign up

Export Citation Format

Share Document