simultaneous sorption
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Radhia Yous ◽  
Razika Khalladi ◽  
Hakima Cherifi

Abstract Industrialization has induced tremendous environmental problems, particularly surface and underground water pollution by harmful heavy metals. In this work, we attempt to eliminate simultaneously iron and cadmium from aqueous solutions by adsorption on Algerian Bentonite. This abundant material was used without any modification. The sorption mechanism was investigated, and effects of pH, initial adsorbate and adsorbent concentrations were studied. The kinetics study revealed that equilibrium was reached after 120 min for both metals, and maximal adsorbed quantities of cadmium (76 mg/g) and iron (55 mg/g ) were obtained at pH = 10 and 8 respectively. Different kinetic models were tested, such as pseudo first-order, pseudo second-order, film and intraparticle diffusion models. The pseudo second-order model fits well the experimental data. Biot number values (2–39) show that the simultaneous sorption process is controlled by film diffusion due to electrostatic interactions between negatively charged surface and cations, then by the internal diffusion and formation of bonds between cations and adsorbent constituents. Also, compared to iron the high and rapid sorption of cadmium reflects the selective nature of the sorption process. These results show that raw bentonite could be used without further treatment as an efficient sorbent for heavy metals mixture.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2768
Author(s):  
Agnieszka Cuprys ◽  
Zakhar Maletskyi ◽  
Tarek Rouissi ◽  
Harsha Ratnaweera ◽  
Satinder Kaur Brar ◽  
...  

Biochar and chitosan are considered as green and cost-effective adsorbents for water purification; the combination of these two materials may lead to an improved adsorption capacity of the generated adsorbents. Most sorption studies have been focused on the ability to adsorb one contaminant or the same type of contaminants. Thus, this study aimed to produce chitosan-biochar beads (CH-BB) and test their efficiency in the simultaneous removal of a metal-complexing antibiotic, ciprofloxacin (CIP), and three metal(loid)s (As, Cd and Pb). Modification of raw pig manure biochar resulted in an increase in its adsorption capacity, except for Pb. The highest increment was observed for As (almost 6-fold) and the lowest was observed for CIP (1.1-fold). The adsorbent was able to simultaneously remove all targeted contaminants, individually and in the mixture. The adsorption capacity of CH-BB followed the order: Pb > Cd > >As > CIP. When Pb and As were present in the same mixture, their removal efficiency increased from 0.13 ± 0.01 to 0.26 ± 0.05 mg/g for As and from 0.75 ± 0.08 to 0.85 ± 0.02 mg/g for Pb due to their co-precipitation. The CIP–metal complexation probably resulted in a reduced adsorption ability for inorganics due to the decreased concentration of free ions. The presence of metals and metalloids led to alterations in CIP’s mobility.


Chemosphere ◽  
2021 ◽  
pp. 130973
Author(s):  
Kallayanee Naloka ◽  
Duangporn Polrit ◽  
Chanokporn Muangchinda ◽  
Honglada Thoetkiattikul ◽  
Onruthai Pinyakong

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Buhani ◽  
Tri Agus Wijayanti ◽  
Suharso ◽  
Sumadi ◽  
Muslim Ansori

AbstractBiomass of algae is a very potent adsorbent for absorbing aqueous waste containing heavy metals and organic dyes. This study purposes to confirm the ability of adsorbents from green algae Nannochloropsis sp. modified with silica (ASN) and followed by coating magnetite particles (ASN-MPs) to absorb simultaneously the mixture of Methylene Blue (ME) and Cu(II) cations in aqueous solution. Simultaneous sorption of ME and Cu(II) cations to ASN and ASN-MPs was carried out by the batch method with the interaction pH condition 7, contact time 90 min, and initial concentrations of ME and Cu(II) cations (0.1–1.0 mM). Based on adsorption data, Cu(II) cations have a greater adsorption rate and capacity (qm) compared to ME at the same contact time and initial concentration. The adsorption capacity (qm) values of the bi-component ME and Cu(II) cation mixture in ASN and ASN-MPs were 1.39 × 10− 1 and 5.32 × 10− 1 mmol g− 1, respectively, with the binary Langmuir adsorption isotherm constant for Cu(II) cations greater than ME. Modified adsorbent from algae Nannochloropsis sp. with silica matrix and magnetite particle coating is an adsorbent that has a high effectiveness in the collective sorption of ME and Cu(II) cations. Therefore, these adsorbents can be used for the adsorption of cation mixtures of heavy metals and organic dyes that are cationic in solution.


2021 ◽  
Author(s):  
Buhani ◽  
Tri Agus Wijayanti ◽  
Suharso ◽  
Sumadi ◽  
Muslim Ansori

Abstract Biomass of algae is a very potent adsorbent for absorbing liquid waste containing heavy metals and organic dyes. This study purposes to confirm the ability of adsorbents from green algae Nannochloropsis sp. modified with silica (ASN) and followed by coating magnetite particles (ASN-MPs) to absorb simultaneously the mixture of methylene blue (ME) and Cu(II) cations in aqueous solution. Simultaneous sorption of ME and Cu(II) cations to ASN and ASN-MPs was carried out by the Batch method with the interaction pH condition 7, contact time 90 minutes, and initial concentrations of ME and Cu(II) cations (0.1 - 1.0 mmol L-1). Based on adsorption data, Cu(II) cations have a greater adsorption rate and capacity (qm) compared to ME at the same contact time and initial concentration. The adsorption capacity (qm) values of the bi-component ME and Cu(II) cation mixture in ASN and ASN-MPs were 1.385 x 10-1 and 5,319 x 10-1 mmolequiv g-1, respectively, with the binary Langmuir adsorption isotherm constant for Cu(II) cations greater than ME. Modified adsorbent from algae Nannochloropsis sp. with silica matrix and magnetite particle coating, is an adsorbent that has a high effectiveness in the collective sorption of ME and Cu(II) cations. Therefore, these adsorbents can be used for the adsorption of cation mixtures of heavy metals and organic dyes that are cationic in solution.


2020 ◽  
Author(s):  
Buhani ◽  
Tri Agus Wijayanti ◽  
Suharso ◽  
Sumadi

Abstract Biomass of algae is a very potent adsorbent for absorbing liquid waste containing heavy metals and organic dyes. This study purposes to confirm the ability of adsorbents from green algae Nannochloropsis sp. modified with silica (ASN) and followed by coating magnetite particles (ASN-MPs) to absorb simultaneously the mixture of methylene blue (ME) and Cu(II) cations in aqueous solution. Simultaneous sorption of ME and Cu(II) cations to ASN and ASN-MPs was carried out by the Batch method with the interaction pH condition 7, contact time (15–120 minutes), and initial concentrations of ME and Cu(II) cations (0.1–1.0 mmol·L− 1). The simultaneous sorption parameters of ME and Cu(II) cations by ASN-MPs trend to comply the pseudo-second-order kinetics model by rate constant values for pseudo-second-order (k2), respectively 8.98 × 10− 3 and 9.78 × 10− 3 (g·mmol− 1·min− 1). The ME adsorption pattern and Cu(II) cations in the competition on ASN-MPs adsorbents, each tends to follow the Freundlich and Langmuir adsorption isotherms. Based on adsorption data, Cu(II) cations have a greater adsorption rate and capacity (qexp) compared to ME at the same contact time and initial concentration. Modified adsorbent from algae Nannochloropsis sp. with silica matrix and magnetite particle coating, is an adsorbent that has a high effectiveness in the collective sorption of ME and Cu(II) cations. Therefore, these adsorbents can be used for the adsorption of cation mixtures of heavy metals and organic dyes that are cationic in solution.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Elizaveta A. Rukosueva ◽  
Gulselem R. Aliyarova ◽  
Tatyana I. Tikhomirova ◽  
Vladimir V. Apyari ◽  
Pavel N. Nesterenko

A novel preconcentration/separation method for simultaneous sorption-spectrophotometric determination of anionic food dyes Sunset Yellow and Tartrazine is proposed. The method is based on preconcentration of the dyes using solid phase extraction on a cartridge filled with silica chemically modified with C16 groups from aqueous solution at pH 1 followed by elution with water/acetonitrile mixture containing 2 mmol·L−1 KH2PO4 adjusted to pH 3 with a step gradient of acetonitrile content. This elution allows quantitative separation of the dyes which makes their individual spectrophotometric determination possible. The detection limits for Tartrazine and Sunset Yellow are 0.15 and 0.11 μg·mL−1 and the linearity range is 2–20 μg·mL−1. The method is applied for analysis of beverages. The recovery of dyes is higher than 97% at the relative standard deviation not exceeding 10%.


Sign in / Sign up

Export Citation Format

Share Document