Calcium and Magnesium Effects on Ammonia Adsorption by Soil Clays

2005 ◽  
Vol 69 (4) ◽  
pp. 1225-1232 ◽  
Author(s):  
Katerina M. Dontsova ◽  
L. Darrell Norton ◽  
Cliff T. Johnston

Soil Research ◽  
1977 ◽  
Vol 15 (3) ◽  
pp. 255 ◽  
Author(s):  
WW Emerson ◽  
CL Chi

Samples of illites, two extracted from soils, one from a shale, prepared with a range of exchangeable calcium, magnesium, sodium were immersed dry into water. The extent of dispersion with time was estimated visually and also deduced from the O.D. of the suspensions derived from the dispersed clay. The dispersion of wet calcium and magnesium soil illites sheared at a given water content and then immersed in water was also assessed visually. The dispersion of all three illites was enhanced when magnesium was the dominant cation rather than calcium. For the soil clays a lower ESP was required to initiate dispersion of the dry clay when immersed in water. Both calcium and magnesium forms of the shale illite dispersed partially over a period of several days when immersed dry into water, the magnesium to a greater extent than calcium. The magnesium form of the coarser of the two soil illites also dispersed slowly. By comparing the calcium-magnesium and calcium-sodium forms of the last clay, it was deduced that about 10 times the equivalent concentration of exchangeable magnesium as sodium was needed to cause the same degree of dispersion. For the other soil illite the water content for dispersion of the wet, sheared magnesium clay was found to be less than for the calcium clay. The O.D. of suspensions of the clays was found to decrease with increasing ESP and when magnesium was the dominant cation rather than calcium. This is explained in terms of particle aggregation. The ease of dispersion of the illites was correlated with particle size. Possible reasons for this, and the effect of magnesium, as opposed to calcium, on the forces between the clay particles are discussed.



Soil Science ◽  
2008 ◽  
Vol 173 (2) ◽  
pp. 108-118 ◽  
Author(s):  
Nerilde Favaretto ◽  
L. Darrell Norton ◽  
Sylvie M. Brouder ◽  
Brad C. Joern


1964 ◽  
Vol 12 (01) ◽  
pp. 179-200 ◽  
Author(s):  
Torstein Hovig

SummaryThe effect of calcium and magnesium on the aggregation of rabbit blood platelets in vitro was studied, with the following results:1. Platelet aggregation induced by ADP or collagen could be prevented by EGTA or EDTA. The aggregating effect was restored by recalcification. The effect was also restored by addition of magnesium in EDTA-PRP, but not in EGTA-PRP unless a surplus of calcium was present.2. Calcium remained in concentrations of the order of 0.15–0.25 mM after dialysis or cation exchange of plasma. Aggregation of washed platelets resuspended in such plasma could not be produced with ADP or collagen, unless the calcium concentration was increased or that magnesium was added.3. The adhesiveness of blood platelets to collagen was reduced in EGTA-PRP and EDTA-PRP. Release of ADP from platelets influenced by collagen could not be demonstrated either in EGTA-PRP (presence of magnesium) or in EDTA-PRP.4. It is concluded that calcium is a necessary factor both for the reaction leading to release of ADP and for the the aggregation produced by ADP.5. Thrombin induced aggregation of washed platelets suspended in tris-buffered saline in the presence of calcium. No effect of magnesium could be observed unless small quantities of calcium were present.



1962 ◽  
Vol 21 (4) ◽  
pp. 798-803 ◽  
Author(s):  
Keith J. Smith ◽  
Walter Woods


2018 ◽  
Vol 20 (2) ◽  
pp. 150-169
Author(s):  
Ja.F. Zverev ◽  
◽  
V.M. Bryukhanov ◽  
A.Ya. Rykunova ◽  
◽  
...  


2019 ◽  
Vol 64 (12) ◽  
pp. 1274-1280
Author(s):  
L. P. Ogorodova ◽  
Yu. D. Gritsenko ◽  
M. F. Vigasina ◽  
A. Yu. Bychkov ◽  
D. A. Ksenofontov ◽  
...  

A thermochemical study of natural calcium and magnesium orthosilicate ─ monticellite (Ca1.00Mg0.95)[SiO4] (Khabarovsk Territory, Russia) was carried out on the Tian-Calvet microcalorimeter. The enthalpy of formation from the elements fHоel(298.15 K) = -2238.4 4.5 kJ / mol was determined by the method of high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of the theoretical composition of CaMg[SiO4] are calculated: fH0el(298.15 K) = -2248.4 4.5 kJ/mol and fG0el(298.15 K) = -2130.5 4.5 kJ/mol.



Sign in / Sign up

Export Citation Format

Share Document