A Chemical Fractionation for Structure-Function Relations of Soil Organic Matter in Nutrient Cycling

2006 ◽  
Vol 70 (3) ◽  
pp. 1013-1022 ◽  
Author(s):  
Daniel C. Olk



2021 ◽  
pp. 383-411
Author(s):  
P. K. Ramachandran Nair ◽  
B. Mohan Kumar ◽  
Vimala D. Nair


Soil Research ◽  
2015 ◽  
Vol 53 (6) ◽  
pp. 605 ◽  
Author(s):  
B. W. Murphy

A review has been undertaken into how soil organic matter (SOM) affects a range of soil properties that are important for the productive capacity of soils. The potential effect of varying the amount of SOM in soil on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also including relevant information from overseas. The soil properties considered included aggregate stability, bulk density, water-holding capacity, soil erodibility, soil colour, soil strength, compaction characteristics, friability, nutrient cycling, cation exchange capacity, soil acidity and buffering capacity, capacity to form ligands and complexes, salinity, and the interaction of SOM with soil biology. Increases in SOM have the capacity to have strong influence only the physical properties of the surface soils, perhaps only the top 10 cm, or the top 20 cm at most. This limits the capacity of SOM to influence soil productivity. Even so, the top 20 cm is a critical zone for the soil. It is where seeds are sown, germinate and emerge. It is where a large proportion of plant materials are added to the soil for decomposition and recycling of nutrients and where rainfall either enters the soil or runs off. Therefore, the potential to improve soil condition in the top 0–20 cm is still critical for plant productivity. The SOM through nutrient cycling such as mineralisation of organic nitrogen to nitrate can have an influence on the soil profile.



2017 ◽  
Vol 38 (4) ◽  
pp. 1799
Author(s):  
Denilson Dortzbach ◽  
Shirlei Almeida Assunção ◽  
Marcos Gervasio Pereira ◽  
Eduardo Carvalho da Silva Neto

The implementation of agricultural systems such as viticulture can quantitatively and qualitatively affect the contents of soil organic matter (SOM). These changes may modify the edaphic features of the soil as well as the soil quality. The objective of this study was to evaluate the chemical and physical fraction of SOMand to analyze changes in the carbon stock and C management index in areas of implanted vineyards in altitude regions of Santa Catarina. Four regions were selected: Region I (Urubici); Region II (San Joaquim); Region III (Campos Novos) and Region IV (Água Doce). In each region, we selected vineyards implanted between 2001 and 2005 as well as surrounding forested areas. Disturbed and undisturbed samples were collected from the 0-5, 5-10, and 10-20 cm layers of the soil. Samples were prepared in the laboratory to obtain air-dried soft soil, which was then used for the analysis of several parameters, namely total organic carbon (TOC), carbon stock,and chemical fractionation of the soil. The chemical fractionation was then used to determine carbon content in the fulvic acid fraction (C-FAF), humic acid fraction (C-HAF), and humin fraction (C-HUM). We also analyzed particle size, quantified the levels of particulate carbon (COp) and carbon associated with clay and silt (COam), and calculated the carbon management index (CMI). We evaluated normality and homogeneity for all data. The results were evaluated with an analysis of variance and subsequent F-test. Mean values were compared using a 5% Student’s t-test and subsequently submitted to a Tukey’s test. The highest TOC levels were observed in Region II in the 0-5 cm layer in both vineyard and forested areas. Vineyard areas exhibited lower values of TOC, Cop, and COam compared to forested areas indicating that the management adopted in these areas contributed to the reduction of these fractions. Forested areas exhibited a higher proportion of Cop compared to vineyard areas. The humin fraction represented the largest portion of the TOC and comprised the highest values in both forested and vineyard areas. The carbon management index indicated a low contribution of vineyard areas or a reduction in carbon storage in their soils.



1993 ◽  
pp. 277-306
Author(s):  
P. K. Ramachandran Nair


2016 ◽  
Vol 124 ◽  
pp. 139-148 ◽  
Author(s):  
Olsen Rainness Mouloubou ◽  
Pascale Prudent ◽  
Stéphane Mounier ◽  
Jean-Luc Boudenne ◽  
Madi Guirema Abaker ◽  
...  


2017 ◽  
Vol 115 ◽  
pp. 322-336 ◽  
Author(s):  
Thomas Wutzler ◽  
Sönke Zaehle ◽  
Marion Schrumpf ◽  
Bernhard Ahrens ◽  
Markus Reichstein


Author(s):  
K. W. T. Goulding ◽  
D. V. Murphy ◽  
A. Macdonald ◽  
E. A. Stockdale ◽  
J. L. Gaunt ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document