An adapted sequential chemical fractionation coupled with UV and fluorescence spectroscopy for calcareous soil organic matter study after compost amendment

2016 ◽  
Vol 124 ◽  
pp. 139-148 ◽  
Author(s):  
Olsen Rainness Mouloubou ◽  
Pascale Prudent ◽  
Stéphane Mounier ◽  
Jean-Luc Boudenne ◽  
Madi Guirema Abaker ◽  
...  
2021 ◽  
Vol 211 ◽  
pp. 105001
Author(s):  
Amanda M. Tadini ◽  
Alfredo A.P. Xavier ◽  
Débora M.B.P. Milori ◽  
Patrícia P.A. Oliveira ◽  
José R. Pezzopane ◽  
...  

2007 ◽  
Vol 170 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Sheng-Mao Yang ◽  
Sukhdev S. Malhi ◽  
Feng-Min Li ◽  
Dong-Rang Suo ◽  
Ming-Gang Xu ◽  
...  

2017 ◽  
Vol 38 (4) ◽  
pp. 1799
Author(s):  
Denilson Dortzbach ◽  
Shirlei Almeida Assunção ◽  
Marcos Gervasio Pereira ◽  
Eduardo Carvalho da Silva Neto

The implementation of agricultural systems such as viticulture can quantitatively and qualitatively affect the contents of soil organic matter (SOM). These changes may modify the edaphic features of the soil as well as the soil quality. The objective of this study was to evaluate the chemical and physical fraction of SOMand to analyze changes in the carbon stock and C management index in areas of implanted vineyards in altitude regions of Santa Catarina. Four regions were selected: Region I (Urubici); Region II (San Joaquim); Region III (Campos Novos) and Region IV (Água Doce). In each region, we selected vineyards implanted between 2001 and 2005 as well as surrounding forested areas. Disturbed and undisturbed samples were collected from the 0-5, 5-10, and 10-20 cm layers of the soil. Samples were prepared in the laboratory to obtain air-dried soft soil, which was then used for the analysis of several parameters, namely total organic carbon (TOC), carbon stock,and chemical fractionation of the soil. The chemical fractionation was then used to determine carbon content in the fulvic acid fraction (C-FAF), humic acid fraction (C-HAF), and humin fraction (C-HUM). We also analyzed particle size, quantified the levels of particulate carbon (COp) and carbon associated with clay and silt (COam), and calculated the carbon management index (CMI). We evaluated normality and homogeneity for all data. The results were evaluated with an analysis of variance and subsequent F-test. Mean values were compared using a 5% Student’s t-test and subsequently submitted to a Tukey’s test. The highest TOC levels were observed in Region II in the 0-5 cm layer in both vineyard and forested areas. Vineyard areas exhibited lower values of TOC, Cop, and COam compared to forested areas indicating that the management adopted in these areas contributed to the reduction of these fractions. Forested areas exhibited a higher proportion of Cop compared to vineyard areas. The humin fraction represented the largest portion of the TOC and comprised the highest values in both forested and vineyard areas. The carbon management index indicated a low contribution of vineyard areas or a reduction in carbon storage in their soils.


2020 ◽  
Author(s):  
Amanda Maria Tadini ◽  
Alfredo Augusto Pereira Xavier ◽  
Ladislau Martin-Neto ◽  
Débora Marcondes Bastos Pereira Milori ◽  
Alberto Carlos de Campos Bernardi

<p>The Integrated Crop-Livestock-Forest Systems (CLF) have been able to capture and store the carbon (C) in the form of Soil Organic Matter (SOM), in different regions in Brazil, thereby contributing to mitigate agricultural greenhouse gases emission. This is an eligible practice in Low Carbon Emission Agriculture Plan in Brazil, and currently has around 15 million hectares under use, a very positive and important trend in soil land use in Brazil. SOM is considered a relevant indicator of soil quality due to its direct relationship with biological, chemical, and physical properties, allowing it to evaluate the impacts of agricultural management. Laser-based spectroscopies as Laser-Induced Fluorescence Spectroscopy (LIFS) and Laser-Induced Breakdown Spectroscopy (LIBS) have become promising tools in the evaluation of the SOM in agricultural soils. LIBS can measure soil C, and LIFS can infer about the chemical structure of SOM, mainly aromaticity. The standard protocol for measuring soil C changes involves soil sampling at the field and chemical sample preparation for laboratory analysis. Although this procedure produces precise results, it takes time, generates chemical residues, and the costs restrict its routine for large scale use in agricultural projects. Thus, there is a need to develop clean (green chemistry), rapid, precise, and cost-efficient methods for measuring soil C changes in the field. Also, information about the chemical structure of SOM usually is done through spectroscopic techniques, such as <sup>13</sup>C NMR, EPR, and fluorescence of humic acid, which are not applied for large scale measurement and mapping. LIFS can be applied in whole soil and can be used to evaluate the aromaticity of SOM, and consequently, its chemical stability.  The objectives of this study were to evaluatethe soil C stock and SOM Stability of some Brazilian soils under different integrated systems, such as,Crop-Livestock-Forest (CLF), Crop-Livestock (CL) and Livestock-Forest(LF). The results showed the combination of soil carbon accumulation, and an increase of SOM aromaticity for CLF, which can be promising for sustainable intensification in agriculture.</p><p><strong>Keywords: </strong>Sustainable Intensification; Soil Organic Matter; Carbon stock; Laser-Induced Fluorescence Spectroscopy; Integrated Crop-Livestock-Forest Systems</p>


Sign in / Sign up

Export Citation Format

Share Document